오늘 인문계 고대 모의논술
게시글 주소: https://h.orbi.kr/0001144478
수리논술 a 답 2030이라는데
찍어서 맞앗는데
풀이좀 알려줄 사람 업나?ㅜㅜ
수리논술 b풀이도 ㅜㅜ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
여기 올라온 답은 저랑 답이 너무 달라서 제 답 올려봅니다 1-1 pi/12 ,...
-
공부한 거 올리고 그럴거임
-
탐구끝나고 퇴실시간까지 폰없으면 정신과시간의방이라길래 챙겨갔었는데 퇴실때까지...
-
결국엔 1
어그로 ㅈㅅ 정시 보고 있는데 작년 기준으로 합격 최종이 상위 70퍼센트라는게...
-
학교 내신기출인데 혹시 답이 뭘까요.. 그리고 문화누리카드는 좁은의미의 문화인가요?
-
올해 국어끝나고 진짜 ㅈㄴ시끄러웠고 밥먹고 영어보는데 밖에서 떠드는거 개빡셌음뇨
-
더싸게할분?? 쪽주세요!!‘ㅜ
-
근데 젠가를 세우기 싫으면 어떻게 해야 하냐? 젠가를 언급하지 못하는 분위기를...
-
확실히 이전이랑 운영? 자체가 폼이 달라진듯 올해 좀 기대해봐도 되려나
-
으악 비온다 3
갈려면한참남았는데...
-
23 물리 1컷 46 25 물리 1컷 47~48추정 이게 뭐죠 대체...
-
약대 사탐 Or 과탐 16
ㅈㄱㄴ 사탐 해야할까요 과탐 해야할까요
-
xx대의대 너. 7
내가 눈여겨 보는중.
-
학군지 물리 내신 1등, 교내 물리 경시대회 금상, 고2 학평 물리 올만점인데 수능...
-
옵창 판별해줌 89
댓ㄱㄱ
-
친구만나고옴 0
오랜만에사회적상호작용을 대학로 많이 바뀌었네 1년반만인데
-
올해 시험장에서 현역들이 고군분투할때 한시간 풀고 누워버리는 n수생 한 명을 보면서...
-
이명학 일리? 신택스? 션티 키스타트? 영어 고정1목표인데 뭐듣는게 좋을까요
-
I특) 1
사람들이랑 말할때는 즐거운데 돌아오면 기빨렸다는 걸 느끼고 아무것도 하기 싫음
-
남1자가 자존심이 있지
-
연애할 때 메가커피가서 쿠폰적립받고 통신사할인받아서 아메살 남자 레스토랑말고...
-
2년연속 핵불로내놓고 언제그랬냐는듯 시간끌기도없이 힘빼버리니까..후회하게만드네
-
정시 재수 목표 3
올해 초에 정시한다고 했는데 1월부터 7월까지 허송세월 보내고 6모 66775...
-
찬우T 교재값 0
올해도 비싸려나 풀커리 타면 거의 50만원정도 나오는거 같던데
-
썩어빠진세상의마지막이과이기때문이아닐까
-
1. 환산식 자체가 미적에게 불리하게 설계되었다는 이유가 궁금함 그러고 확통이...
-
대학 다니면 수능생각이 안나는것도 맞고 존나드는것고 맞는듯.. 0
그냥 모든환경이 입시를 벗어나서 전공과 졸업후의 어쩌고를 얘기하니까 나도 그 템포에...
-
인스타나 만들까 8
그런 거 하다가 수트레스 쌓일까봐 안했는데 흠
-
20km 내에 있는 오르비언 만나기 << 클릭
-
스테이씨 배수민? 닮았는데 모 오르비 호감고닉이 생각나면서....눈 몇 번...
-
고1 3모 국어 1컷 "76" 당시 우리학교 국어 전교 1등 "89"점 이 해에...
-
모 커뮤 보고 하는 말임
-
ㅈㄱㄴ내아는동생의친구의고양이의친구의주인의언니의언니 이야기임
-
어떻게 협력하실건가요
-
22수능 첫 통합수능과 선택과목 체제 역대급 불수능 국어 논란 성불하지 못한 가형...
-
옵치골플님들 4
딜 13000 힐 11000꽃은 아나 바티보다 힐 22000 꽃은 메르시가 더...
-
진학사에서 대부분의 대학 커트라인이 작년이랑 올해랑 너무 다른데 정상인가요? 과기대...
-
이제 뭐하지 4
공부하기시름
-
이런거 잘 몰라서 현우진 김승리 풀커리 타려고 했는데 망하는 길인가?
-
수특과 n제 둘다 기출아닌 문제들인데 n제 풀듯이 수학 수특 옛날거 푸는거...
-
네이버뉴스 보니 수능 가채점 만점자수 두자릿수라는데 6
이거 뭐임뇨? 진짜면 역대급 물수능 아님뇨?
-
이정도면 공대 어느정도 ㄱㄴ한가요..? 이과 중에 수학만 이렇게 나온 성적은 본적이...
-
어떤 종류의 문제집인가요?
-
수분감이나 마플..? 고민중
-
인도의 대치동 9
코타라는 도시인데 저기 사는 백만명의 인구 대부분이 학생과 강사임 도시자체가 거대한 시대인재임
-
%를 보면서 자기 꿈과 진로가 저절로 막 바뀌게 됨 ㅋㅋㅋ 시를 써볼까 아니면 스페인 유학을?
-
모고 1등급 놓친 적 없고 고3 모고도 비슷하게 보는 예비고3이고 수험생활 동안...
-
수학 미적 vs 기하 선택 너무고민됩니다 도와주세요ㅠㅠㅠ 2
약대, 수의대 목표로 공부하고 있습니다. 그동안 시험보면서 수학이 도저히 100점은...
-
설대가능 할까요 작년과 비교시 국수표점낮아져서 가능하다지만 진학사에는 400이상...
저는 자연계봤어요 오늘..ㅋㅋ
인문계는 많이어려웠나요?
자연계는 막 어렵다는느낌은 안들었는데..
글쎄요 ㅋㅋ막연히 수학에 두려움이 있는 문과생에게 수리논술은 꽤 큰 장벽이죠@_@ 수학 잘 하시면 워밍업으로 인문계열꺼 풀어주심 안될까요?ㅜㅜ 고대 사이트에 문제 올라와잇던데...
숫자가 ... 천단위네요.....
본 사람 많네요ㅋㅋㅋ 우리반은 담임이 ㅂ;ㅅ이여서 이거 '모의' 라는 말을 안해줌
그래서 우리반애들 전부 다 뭐 새로생긴 수시인가 했음 그리고 그때 바로 마감ㅋㅋㅋㅋㅋ
담임 진짜 ㅂ;ㅅ;;
엥? 학교에서 뽑아서가는거 아닌가요??
아까 보니까 교내추천 전형 외에 인터넷 접수 전형도 잇더라구용 ㅎㅎ 근데 저희는 따로 말도 안해줌 몇 명만 각각 담임이 직접 전화돌렸는뎅
네 학교에서 뽑을 때 담임이 말해주잖아요
그때 제대로 말 안해줘서 학교에서 마감했어요ㅋㅋ
홈페이지 어디에 있어요? 못찾겠어요;;
아 찾았어요 입학처에 있었네요
아 찾았어요 입학처에 있었네요
b번은 x-x^2<1/4 형태로 만들어서 증명하시면 되겠습니다. 함수를 이용해서요. x가 1/2이 안되도록 증명하시면 됩니다.x가 1/2일때의 값.즉, 최댓값이 1/4이기 때문입니다. 그리고 x는 양수이어야합니다. x가 노령화지수 이기때문에 정의역이 사람입니다. 그래서 무조건 양수가 된다는 것도 쓰셨어야 할겁니다.
x-x^2의 형태는 노령화지수=노년부양비^2을 통해서 만들수 있습니다. 이식을 통해 식을 대입한뒤 x로 치환하시면 됩니다.
저도 오늘 시험봤어요 ㅋ
우와 ㅋㅋㅋㅋ저완전 산으로 갔네요 ㅋㅋㅋ 근데 a형에사 최댓값은 n=2030.5라서 2030년이라고 해도 되나요?? ㅠㅠ 답만 맞았지 진짜 발로 쓰고 나온듯 ㅋㅋ
a번은 n과 n+1을 각각 대입하면 f(n), f(n+1)라고 합시다.
f(n) / f(n+1) <1 이면 f(n) < f(n+1) 이죠? 이걸 이용해서 푸시는겁니다. n이 자연수이기때문에 그 다음수인 n+1과 나눴을때 1보다 작으면 증가상태에 있는 것이고 크면 감소상태에 있는 것이지요. 최댓점은 증가상태에서 감소상태로 변할때에 생깁니다. 그래서 식이 <1, >1 두개가 생기고
각각 2030n이 나옵니다. 그래서 n은 2030이 됩니다.
역시 오르비는 이런 글이 있으면 성지가 되는건가;; 수학의 神들이 많네여 ㅎㅎ
아니요;;;ㅎㅎ
전 수학의 신이 아닙니다;;; 수학 못해요 ㅠㅠ;;
전 지방살아서 교내추천받구 금욜날 받고 오늘 풀었다능..
이게 어제 실시한 거군요 ㅎ
수리논술....만 보면 정신이