왜 벡터의 크기를 제곱하면 내적이 나올까? & 이 점은 변곡점인가요?
게시글 주소: https://h.orbi.kr/00011893846
20170429.pdf
많은 시도를 하고 있습니다. 반갑습니다 일반청의미입니다.
모르겠고. 그게 다 맞는지 모르겠고. 내가 어린지도 모르겠고
그냥 하는거죠 뭐. 뭐가 있겠습니까. 하지만 나는 내가 열심히 노력한단걸 알아요.
노력에 있어서는 저는 꽤 잘한 것 같습니다. 열심히 해볼게요.
이 칼럼은 이 글에 담긴 생각을 바탕으로 쓰게 되었습니다.
공부의 양은 어떻게 정할까? : http://orbi.kr/0008692499
공부의양은 생각의 양과 같고, 생각과 고민은 질문에서 나옵니다!
이렇게 쉽고 기본적인 내용이 어디에 도움이 될까요? : http://orbi.kr/00011592572
공신 방송 다녀온 후기 & 수학 칼럼 연재합니다. http://orbi.kr/00010768917
가장 쉬운 방식으로 개념을 이해해야해요 : http://orbi.kr/00010794675
이차방정식의 해법 해설 + 평행이동할때 왜 점은 +a인데 그래프는 -a일까? :
http://orbi.kr/00010789384
평행이동 해설 & 어떻게 곡선 위의 점의 접선은 한 점으로 정의될까? : http://orbi.kr/00010841663
곡선 위의 점의 접선 해설 & y=|x|는 왜 x=0에서 미분 불가능할까? : http://orbi.kr/00010980265
y=|x|는 왜 x=0에서 미분 불가능할까? & 유리화는 왜하는걸까? : http://orbi.kr/00011115763
유리화는 왜하는걸까? & 판별식이 음수일때 왜 이차방정식은 항상 0보다 클까? : http://orbi.kr/00011420287
판별식이 음수일때 왜 이차방정식은 항상 0보다 클까? & log a b 에서 a>0, a≠1이어야 할까?
http://orbi.kr/00011521076
log a b 에서 왜 a>0, a≠1이어야 할까? & 근과 계수의 관계를 어떻게 유도할까?:http://orbi.kr/00011588911
저번 칼럼은 이거였습니다!
근과 계수의 관계를 어떻게 유도할까?& 왜 벡터의 크기를 제곱하면 내적이 나올까? http://orbi.kr/00011613898
정답갑니다.
이 문제에 대한 풀이는 적지 않겠습니다. 하지만 어떻게 해야하는지는 알겠죠?
최대한 변하지 않도록 도형을 이용해 벡터를 나눠주시면 되겠죠!
이것의 근거는 벡터의 합의 정의와 내적의 정의입니다!
그 기본에 충실하면 반드시 아이디어가 나온답니다. 아니면 그 아이디어 전부 외워야겠죠!
한번 더 말합니다. 공부에는 기본이 제일 중요합니다. 기본으로 아이디어를 떠올리세요.
다음 질문 갑니다. 신-박할거임
언젠가는..! 올리겠지!! 다음에봐요!
제 칼럼은 제 이름을 명시하시고 쓰셔도 됩니다.
올린 pdf파일에 대해서는 제것입니다. 기억해주셔요.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
1등으로 도착 ㅎㅎ
-
미리보기 방지
-
풀었는데 다 맞음 ㅋㅋㅋ ㅁㅌㅊ? ㅋㅋ(물론 한 15분 좀 넘게 걸린듯)
-
88인데 구문강의 높2-1인사람한테 좋나요? 살면서 들어본적ㅇ 없어서 후기좀여
-
친구한테 싹 다 팔아버렸네.. 그냥 국바라도 풀어야겠음 하아
-
기상완료.. 0
독서실 가자.. 가자마자 시발점 통통이부터
-
하루에 할껄 세우면 플레너에 있는 순서대로하나요? 아님 플레너 쓰고 그중에서 하고싶은거 먼저하나요?
-
밖에 존나어둡네 2
아 자고싶어
-
얼부기부기
-
이제 자러가야지 1
2시간 자고 일어나야되네.
-
대치동.. 0
원래 ‘수강료’라고 하면 한 달 기준인가요? 대치동 수1,2,미적 현강 다니고 있고...
-
기상 2
좋은아침입니다
-
나는 오늘 간다 6
일본에
-
배고프다 8
걍 아침을 지금 먹을까 애매한데
-
기상 4
굉장히 안좋은 꿈을 꾼거같은데 기억이안남
-
어삼쉬사 끝내고 뉴런 갈까요 아니면 기출 한 번 돌리고 뉴런할까요
-
손이 몸통이랑 같이 나가면 안되고 분리시켜서 나가고 허리는 힌지 준 상태로...
-
아사 레제 파워 누가 내 여친일까 난 다 좋은데 그냥 세다리 걸칠까.. 꼬시면 넘어올거같은데..
-
___ 1
-
[단독]이재명 “당 지지율 떨어진 이유 밝혀라”… ‘하락세 장기화’ 위기감 1
더불어민주당 이재명 대표가 최근 여론조사에서 민주당 지지율이 하락세를 보이는 데...
-
시대 재종 반 1
언미영화생 순으로 98 92 3 85 81 인데 이정도면 대치에서 반 어느정도일까요?
-
OOO O OOO OO OOOOOOO OOO OO OOOO OOOO OO O...
-
AI랑 반도체 다루는건데이정도면 그래도 유망하지 않음? 공대는 아니던데 이정도면...
-
제 친구들이 기다리고 있어용... 같이 축하해주기로 했었단 말이에요...
-
3모 올3가보자고..
-
내가 부족한가요 1
딩신을 원한 이유로
-
생윤 만점자 출신인데 윤사 해볼까 사문 그대로 할까 4
27학년도 수능 응시 예정인데 24학년도 수능 때 생윤 9월부터 공부해서 만점 받고...
-
숙대는 0
입결이 본캠보다 에리카랑 비슷한거 맞나유? 사촌 냥대 숙대 썻다는데 에리카를 쓴건가
-
스마티 6
-
오뿌이들 잘자 2
우리 같이 꼭 껴안고 자자
-
얼버기 5
리젠무슨일..
-
사탐 추천좀 2
사탐런할거고 지구+@임 사문 생윤 동사 세지 중에 고민인디 각각 장단점좀,,,
-
Hy 견명조 아님??
-
대학커뮤니티 노크에서 선발한 홍익대 선배가 오르비에 있는 예비 홍익대생, 홍익대...
-
오늘부터 연고다 스발
-
누구한테 받고싶음?
-
다들 갓생인가봄
-
하루종일 점공만 보던 폐인 인생을 살다가 오늘 하루 해외 여행가서 잊고 있었는데 새벽 4시에 소식 알게됨 4
새벽 4시에 연세대 노문 붙은거 알게더ㅣㅁ 땅바닥에서 친구들이랑 껴안고 염병이란...
-
아. 4
.
-
표점 5점이면 한두문제 차이인가….
-
. 13
ㅡㅡㅡ
-
우울할땐 우웅해 4
우웅
-
ㅈㄱㄴ
-
현우진 드릴드 3
왜 기하없는데 대체
-
ㅈㄱㄴ
-
솔직히 기우에 가깝겠지?
-
야식을 먹어 0
몬참아
-
소은이고 뭐고 0
제 여친이나 보고가세요
일반청님 죠아 헤헿
ㅎㅅㅎ... 요즘 매우 바빴어요. 간간히 올릴게
초록글로 가세요
헿 갈거양 ㅋㅋㅋㅋ
나 그래도 저번보다 신박한 주제 갖고왔어요 많이봐요.
문과는 울겠지만.. 그래도
이차함수를 회전시켰을 뿐인데 달라지넹..
ㅍㅍ해야지
커여어~
변곡점아니지안나융
네
글구 함수가아닌데 변곡 따지는게 의미가업지안나융
개이득....
그렇다면 기하와 벡터는 무엇을 하는 과목일까요!
이차곡선과 평면벡터, 공간도형 공간벡터!
함수라는 전제가 있어야한다.
x->y로 보면 함수가 아니다.
y->x로 보면 함수이다.
y->x로 보면 이차함수이다.
이차함수는 실수(y) 전체에서 아래로 볼록이므로 변곡점이 존재할 수 없다.
하... 정말 답 쉽죠..ㅠㅠ 몇분만에 털려버리네
기하와 벡터는 무엇을 하는 과목일까요!
정말 어려운 질문이네요 ㅋㅋㅋ
16학년도까지는 일차변환 단원을 보면
말 그대로 미적분과 거의 관련 없이 기하에만 초점을 둔 것 같습니다.
수능문제도 행렬 연산과 관련된 문제는 3점으로 출제가 많이 되었고
회전변환, 닮음변환과 관련된 문제가 4점으로 많이 나왔죠.
2013학년도 수능 9번은 행렬 연산으로만 접근하면 풀이가 매우 길어지지만 도형의 이동 상황 중심으로 조금만 생각하면 굉장히 식이 단축되어서
기하와 벡터 학습의 목적을 잘 나타내는 문제인 것 같아요.
17학년도부터는 음함수 미분, 매개변수 미분 등등 미적분 요소가 추가 되어서 미적분과 관련이 없다고 할 수는 없는 것 같아요.
미적분은 증가와 감소, x에서 y로 인과관계의 기준이 정해져 있는 도구라면
기하와 벡터는 이를 깬 상태에서 순수한 기하 성질을 배우고(이차곡선)
혹은 새로운 기준을 정하고 각 성분들을 독립적 요소로 보면서 다르게 접근하는 과목? (벡터)
정말 바로 다음칼럼 쓰고싶네요 ㅋㅋㅋ
맞습니다. 하지만 한문장으로 설명할수잇지
그리고 왜 굳이 미분할 수 있는데 기하성질 배워야하나여!
걍 식나오면 미분때려버리면 안되나
함수는 뭐고 그러면 도형은 뭘까요?
함수는 "규칙이 있는 대응관계"이고, 도형은 "그냥 대응관계"입니다. 다른 얘기까지 하려면 어어어엄청 길어지니까 하나만 짚자면, 함수는 도형의 부분집합입니다.
규칙이 있는 대응관계라는 말에 동의합니다.
즉, 알고보면 도형이 더 큰 집합이라는 것입니다. 이 사실이 갖는 의미는 무엇이냐면, 미적분에서 우리가 미분을 배운 이유는 우리가 머릿속에서 그려지지 않는 함수들을 그려보기 위함이었듯, 도형도 우리가 머릿속에서 그려지지 않는 "도형"들을 그릴 수 있어야 한다는 것입니다.
(뭐 꼭 미분이 그렇다는 것이 아니고, 그냥 일부분만 떼어서 생각한 겁니다. 미분이라는 도구가 꼭 "작도"를 위해서 생긴 도구라고 말하는 것이 아님을 밝히겠습니다.) 따라서 우리는 함수처럼 도형도 그 생김새를 정확히 알아야 하는 필연성이 생깁니다. 그래서 굳이 기하와 벡터에서 음함수의 미분법, 매개변수의 미분법을 따로 떼어서 배우는 것이지요
그렇담 벡터는 왜 배우는 것이냐... 저도 아직 고2인지라 잘은 모르지만, 요약해서 말씀드리자면, 벡터는 기하적 해석에 필요한 도구이고, 기하적 해석을 하는 이유는 "모르는 것, 상상도 안되는 것"을 표현하기 위해서 입니다. 뭐.,,.. 앞의 말과 같은 이야기지요. 하지만 이러한 논리적 필요성이 저는 중요하다고 봅니다.
정리하면, 벡터는, 함수를 포함하는 도형을 나타내기 위해서 만들어진 것입니다. 허어ㅓ, 이것에 대해서도 설명해 드려야 하지만, 이것도 쓸려면 엄청 길기 때문에 줄이겠습니다. 하지만, 벡터는 도형을 표현한다, 움직임을 표현한다, 점, 선, 면을 포함한다는 것에 정말 중요한 도구라는 것은 확실합니다. (몇 번 말하는 건지 모르겠지만) 따라서 우리는 벡터를 배우고 그것으로 도형을 표현하는 것이 정말 중요한 목적이라는 것입니다.
이것으로 보면, 공간벡터, 공간도형 역시 무엇을 하는 학문인지에 대한 의문이 없어집니다. 왜냐, 우리가 사는 세상은 가로, 세로, 위아래, 그리고 시간이라는 총 4개의 차원으로 이루어진 4차원 세계이기 때문에, 4차원의 축은 아직까지는 몰라도, 적어도 3차원에서의 기하적 해석을 할 줄 알아야 하는 필연성이 생깁니다. 따라서 우리는 공간도형에서 어떻게 하면 선의 위치를 결정하는지, 점의 위치를 결정하는지, 면의 위치를 결정하는지 알 수 있는 것입니다. 공간벡터도 뭐,,, 위와 같은 이유로 필요성이 생깁니다.
총정리하자면, 우리는 함수말고도, 도형을 표현할 줄 알아야 하는데, 우리는 지금까지 함수만 해석의 대상으로 여겼으니, 이제는 음함수 미분법, 매개변수 미분법으로, 함수가 아닌 것을 미분하여 개형을 알아내고, 벡터를 통해 위치관계를 표현하고 또한 이제는 2차원이 아닌 3차원의 좌표계를 사용하여, 궁극적으로 자연계에 존재하는 모든 것들을 "해석"할 수 있도록 하기 위해 기하와 벡터를 배우는 것이라고 결론 내릴 수 있습니다.
저기 닉넴의 의미가 뭔가요?ㅎㅎ
저는 처음에는 그냥 보통사람의 뭔가 평범한 즐거움이라 지었고
그냥 일상의 즐거움이라 생각하시면 될것같아요.
일반좋아 >_<
ㅎㅅㅎ
ㅇㄷ
원점요
다음 주제는 기벡과 미적분의 차이점에 대해 다루는 건가요? 올라온다면 기대하고 있을게요! 제가 자주 호기심 가졌던 부분이거든요ㅋㅋㅋ
해설은 그것에 대해 말씀드리고자 합니다.
그리고 그 답은 사실 저 문제에 있음
22번하고 그 밑에 문제까지 둘 다 칼개념에서 풀었던거당 갓영진 풀이 짱
저 차영진 선생님 잘 모르는데 소문은 들었습니다.
근데, 더 정확하고 깊게 설명할 수 있을걸요?ㅋㅋ
다음칼럼 주제도 생각해보셔요 ㅋㅋ
네 맞아요 22번 저거는 마침 어제 풀었던건데 40분동안 5가지정도? 방법으로 풀이해주시더라구요
팔로우 하겠습니다 칼럼 잘 챙겨볼게용ㅎㅎ
헐? 5가지 방법이 필요한가여 ㅋㅋㅋㅋㅋ
5가지 방법중에 개념을 정확하게 적용하는 풀이를 기억하고
개념과 함께 연결해주시면 될것같아요.
잘 읽고 갑니다 너무 고마워요 ㅎㅎ
감사합니다
잘 읽고 갑니다. 그리고 문송합니다.
죄송합니당..ㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠ
오오..저 벡터가 약해서..저런 문제 보면 슬퍼짐...
ㅠㅠㅠ 힘을내요.
정독하고 저 아래 문제에 대한 생각해보셔요
그래프 그리고 넓이 구하는 게 미적의 목적이라면 너무나 김빠지는 답이네요
기벡에 대해서도 그런 설명을 요구하시는 건지요
일단 대략적인 기능을 적었습니다.
미적분1의 목차에서는
수열의 극한
함수의 극한과 연속 이것들은 미적분 개념의 선수학습.
미분계수와 도함수
이 단원에서 미분계수와 접선, 미분가능과 도함수를 배웠고
또한 접선의 방정식, 평균값의 정리와 그를통한 증가와 감소, 극대와 극소, 함수의 그래프와 방정식과 미분, 속도와 가속도를 논했습니다.
결국 고교과정에서 미분의 기능중 가장 중요한것은 그래프 그리는것이죠.
적분법에서는 부정적분과 구분구적법으로 이어지는 정적분을 배웠으며 미적분학의 기본정리가 나옵니다.
그것으로 우리는 넓이를 구할 수 있었죠.
미적분 1에서의 미적분의 역할은 넓이를 구하고 그래프를 그리는것이라 요약할 수 있습니다.