미분계수를어떻게이해해야되죵?
게시글 주소: https://h.orbi.kr/0001747449
곡선이있는데, 우선 곡선의 전체적인틀을파악하기위해 곡선위의두점을잡아서
기울기로써 나타낸 평균변화율이라는게있는데, 그걸로는 곡선의디테일한부분을알수없기에
점점 두점사이의거리르좁혀봅니다 그래서탄생한게미분계수.
a점은 고정으로잡고 x점을 점점 극한을보내서 a로보내는건데
미분계수라는건 0/0 꼴이잖아요.
그래서 약간 뭔가 감이안잡혀요
a와 x점의 기울기 에서 x점을 a점쪽으로보내는건데
극한이란게 a점으로한없이보내는거지 a점이라는건아니잖아요.하지만
한없이보내면 결국 최종목적지는 a점밖에될수없기때문에 극한값은 a가되는데
자꾸,, x가 a로가면 0/0꼴에서 따로계산하면0/0이지만 약분이되어서 값이나오는건데
자구 x가 a로가면 f(x)-f(a) /x-a 가 f(a)-f(a)/a-a 이렇게된다고느껴지는데;
어떻게해야되죵?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
제가 예비고3 인데 현우진t의 시발점 수1 수2 미적 상하를 했어요 인강은 다돌렸고...
-
소신발언한다 4
기하인강 다 내려도 될 거 같아요.. 돈도 안되는데
-
국어 과외 하고싶은데 정시라 원서를 너무 늦게쓴다...
-
가성비 굳굳
-
시발점 뉴런 3
예비고3인데 시발점 뉴런중 뭐 들어야할지 고민입니다 올해 개때잡+쎈, 기출끝...
-
나도 떠야겠다..
-
에너지 효율은 인간이 원톱임. 이정도로 효율 좋은 CPU와 동력원은 아무리 AI와...
-
수2 질문 4
도함수가 실수전체 집합애서 연속이면 원래함수는 실수 전체집합에서 미분가능하다 이거 맞는 명제인가요?
-
전역하고 혼자 서울 부산 갈 것 같은데 제주도도 가볼까요
-
이 정도 성적이면 아주대 정외과 장학금 먹고 들어갈 수 있나요? 집이랑 가까워서...
-
그 나 지문 공리주의랑 의무론이랑 좀 섞여서 공리주의라고 쓰기엔 극단적이라고 보는게...
-
과외알바를 생각하시는 분들을 위한 매뉴얼&팁입니다. 미리 하나 장만해두세요~~...
-
쿠팡어ㄸㅓㅁ뇨
-
그냥 궁금함 ㅇㅇ
-
고속 살까 11
흠..
-
밥먹는데 적적해서 켰더니 밥은 안먹고 예능만 보는중 ㅋㅋ
-
전 왜 텔그 반영점수가 11
낙지보다 안 나올까요 뭐지... 낙지에서 1점 높게 나오네요
-
어떤 업체든 70만원이면은.... 1학기에 대학 다닐 때 월세 빼고 생활비가 40...
-
오노추 1
GOAT
-
기하vs확통 5
2024 2025수능 모두 확통했는데 디메릿이 너무 큰거같네요... 기하로...
-
[서울][경기도+인천]
-
ㅈㄱㄴ
-
몇시에 볼거같아요???
-
센츄 신청함 0
수능 잘봐서 에피 신청하고 싶었는데... 탐구땜에... 걍 9모로 센츄 신청함...
-
ㅇ.
-
뭐해야할지 모르겠음 20
먼가 결정난게 하나도 없어서
-
현우진 이번에 뉴런 개정 된다고 하는데 작년꺼랑 뭐가 달라지는겅예요??
-
연세대 논술 추가 합격 수혜자는 100명 넘긴 어려울 듯 0
오늘 발표된 내용을 보니까 1차는 정상적으로 추합을 진행하는데, 2차는 일단 정원만...
-
후배님덜 자취방 보러 다니는거 도와드릴게여 저 공인중개사 자격증 있어요
-
시발점 0
지금 수1은 쎈발점 했고 수2는 쎈만 풀었고 오답 다시 풀고 있는데 이정도만 하고...
-
20번은 행렬 ㄱㄴㄷ이 국룰이겠군 21번에 수열넣고 28번 확통 29번 미적1 30번 대수 ㄷ
-
몇달째 pending이면 걍 까인거임?
-
업소메타는 후덜덜
-
씨발 쉽지않다
-
이런 사람이 실제로 존재했구나 ㄷㄷ
-
고대 어문 하나 박고 다군 서강대 자전 될지는 모르겠지만 하나 박고 야수의 심장으로...
-
메디컬반수분들 0
이번에 어디가심 복학? 아님 레벨업..?
-
근데 여러분 업소 한번은 어쩔수없이 가는경우 있음 21
상사가 막 너무 좋아해서 야 내가 쏜다 가자 하는데 이거 안가면 야이새끼야어 감히...
-
논술 남았는데 9시간씩 자는 중…
-
그 공무원들이 꽤나 자주가나보더라고 행시합격자랑 술한번먹었는데 취하니까 자꾸 나보고...
-
3수는 누구나 다 하는 것 같고 4수부터 비로소 장수생인 것 같음
-
이원준쌤 안듣지만 이 말은 담아두는중
-
올 수능 2등급이고 평소에 가끔 1나오기도 하고 보통 2등급 중반 정도 나오는데...
-
배수진 치고 쌩4수 하면돼~
-
시발점 렛츠고 2
우진이한테 현혹됨
-
패히로 야나미
3 3.1 3.14 3.141 3.1415 3.14159 3.141592 .....
이와 같은 수열을 생각해 보세요. 아마도, 원주율 pi로 수렴하겠죠? 그렇지만, 어떤 항도 pi가 되지는 못하지요. 각 항이 모두 유한소수이니까요.
함수의 극한에서도, 이와 비슷하다고 생각하면 됩니다.
이렇게 생각해보세요. 이 경우 x를 a에 가깝게 한다는 것을 조금 다른 식으로 표현하면, (a, f(a))라는 점 근처로 점점 우리의 시각을 확대해나가는 것을 뜻합니다.
그런 의미에서 lim_{x→a} (f(x) - f(a))/(x - a) 를 보겠다는 것은, 우리가 (a, f(a)) 라는 점 주변에서 함수의 그래프를 점점 확대해나가는 것을 뜻하며, 결국 이 극한적인 상황에서 우리는 (좋은 함수의 그래프라면) 곡선이 점점 직선으로 펴지는 기적을 맛보게 될 것입니다.
그리고 이 기적의 증거물(?)인 직선의 기울기가 바로 미분계수가 됩니다.
음, 설명이 조금 안 와닿는다면... 기하학적인 색채를 좀 걷어내고 말해볼까요?
0/0 꼴이라는 것은 사실 눈속임입니다. 예를 들어서 3(x-a)/(x-a) 에서 x→a 를 취한다고 합시다. 그러면 분명 이 식은 0/0 꼴이지만, 사실 그 0이라는 것은 분모와 분자에 x-a 가 곱해져서 생긴 허상에 불과합니다.
중요한 것은 그 두 값의 비이지요.
마찬가지로 (x^2 - a^2)/(x - a) 에서도 분모와 분자가 모두 0으로 가서 뭔가 말이 안 되는 상황이 벌어진다고 여길 수도 있겠지만, 사실 분모와 분자에서 0을 주는 항인 x - a 는 여전히 허깨비에 불과하며, 이들은 이미 잘 약분이 되어서 (x^2 - a^2)/(x - a) = x + a 라는 결과를 줍니다.
비유적으로 표현하자면... 겉모습에 속지 마세요 =ㅁ= 원래 어떤 양이 있는데 단지 그것이 분모분자에 0으로 사라지는 양인 x-a 를 추가로 달고 있다고 생각하시면 좀 더 마음이 편할 겁니다.