MediVa : 수학 시험의 기술(2012)_4월모의 대비2 - 행렬의 성질 정오판정
게시글 주소: https://h.orbi.kr/0002858463
수학시험의기술(2012)_3.pdf
안녕하세요. MediVa입니다. 4월 모의고사 대비 자료입니다.
3회 정도가 연재될 것 같고, 이번 자료는 2번째로 행렬의 정오판정에 관련된 자료입니다.
작년 4월 모의고사의 중요한 기출과 수능의 출제 요소를 풀 수 있는 '기술'을 정리했습니다.
이 자료는 <수학 시험의 기술>에 바탕을 두고 만들어졌습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㄹㅇ 잘 시기를 놓쳐서 지금 머리 겁나 아픔 ㅇㅇㅇㅇㅇㅇ
-
무물받음뇨 2
잠이 안옴뇨
-
체감이 안되네 내가 남들 글을 신경 안써서 그런건가
-
이게 여시회원 80만명의 힘인가 난 지금까지 여초화력을 이기는걸 거의 본적이 없음
-
가/나, A/B 중복은 풀면서 가, B 기준으로 나, A에서 중복된 거 지우지 뭐 빠진 거 없죠??
-
34444 언미생지 생명은 높4뜰것같아요ㅜ 문이과 상관없이 인천경기권에서라도 불가능할까요?ㅠㅠ
-
3시간동안유튜브만봣네
-
다들여자어디서만난 11
네
-
머리 멀루하지 1
수능 끝난지가 언젠데 아직도 고민중 머리 어지간히 길어서 웬만한건 다될듯여 추전좀 부탁드려요
-
주말엔 한국어가 잘 안들림
-
유루캠좋다 3
잔잔한게 또 느낌이있거든요
-
아 우리 민석이가 그렇다고 하면야 바로 세체탑 도란이다 아 진짜 어쩔수가 없네 근데...
-
대형특수 50점 출결 7점 가산점 13점 전공학과 20점인데 계산상 90점 나오는데...
-
가 세상이 아침부터 움직이니까 그런거임?
-
69페이지정도 되네.. 다 이해하고 어느정도 암기하면서 썼으니 하루이틀 안에 외울수 있겠지
-
현재 돌아갈 전적대 있는 상황 + 올해 수능으로 적어도 옆구르기 가능일 듯 한데...
-
정해진 시간 되면 핸드폰 못 키게 만드는 뭐 그런 거 없나요 4
1시 전에 자려했는데 말도 안 됨...
-
이거 다 외우면 1등급 나오겠지
-
성적표뜨고 좀 나중에 받나요 접수직전에
-
진짜 건실하게 산다
-
자러가야겠다 3
힘들어요...
-
가채점을 안해서 먼가 끼기가 불편함
-
진짜 잠 5
보이면 차단 박아주셈
-
딱빰 마렵네
-
세지 vs 한지 1
뭐가 더 나을까요 사문이랑 같이 할거임
-
하도 쳐맞다보니까 수능장 문제 볼때 마음이 편했음
-
서버 점검하네ㅋㅋ
-
심심해서 유튭 인스타 보다 질리니까 오르비 보는데 글리젠이 없네.... 다들 수능...
-
ㅇㅈ 1
오늘만 몇번째냐
-
펑임뇨
-
난 수능 끝난 n수생이 아니라 대학생이었음
-
22 예과1학년이니까 22,23 놀고 24본1 빡세게 공부하고 좀 감 잡을꺼아님...
-
빈집털이 하셈 난 안 할 거임
-
오르비에 처음 글 써봅니다 먼저 저는 일단 수시 거의 붙은 것 같아서 반수 준비중인...
-
스펙 평가좀 12
어떰뇨
-
ㅅㅂ질렀다 8
Team기하& Team07 ㄹㅊㄱ~!
-
국어 화작 2(낮) 수학 미적 88 -1 영어 2 생1 50 -1 지1 45 - 1...
-
일반물리학 질문 1
만약 초기 높이와 최종높이가 같은 지표면에서 연직 위로 포물선 운동을 한다고 하면...
-
안아주세요 12
안아주떼욤
-
약값만 46억원…희소병 딸 살리러 국토대장정 나선 목사 아빠 4
[뉴스리뷰] [앵커] 근육이 점점 약해지는 희소병에 걸린 딸아이를 위해 국토대장정에...
-
화1은 인정하거든요 저희 학교 화학쌤도 1은 하지 말라하시고물1은 왜 그런걸까요...
-
졍체가뭐야
-
노래까지 개잘하네 ㅋㅋㅋㅋ 박효신 해줄 수 없는 일 부르는데 웬만한 가수급임 이렇게...
-
1.코딩이 존나 재밌는가? 2.물리 화학은 도저히 안되겠는가? 3.학벌대신 실력으로...
-
머보지
-
수학 0
미적 1틀 96 표점 몇점 예상하시나요 ?
-
작년에 22344 받고 반수 한 사람인데 올해는 12423 받음...
-
일단 자자 1
주식하다가 건강만 배리고 패턴 망가지고 에휴 레포트? 안써 뻑큐
-
매드무비 보고 있는데 제3우스 개잘패서 마음에 든다 너 앞으로도 그렇게 패면 될것같다
3번째 문제는 4월모의고사 작년 기출에서 생각보다 정리할 내용이 많지 않아서 4월 모의고사 대비에서는 다루지 않고, 4월 모의가 끝난 후 6월 모의고사 대비기간에 수능, 평가원 기출로 다루는 편이 나을 듯 합니다. 보다 좋은 자료로 찾아뵙겠습니다.
좋은자료감사합니다 Goo:-D
좋은 자료 감사합니다
감사합니다~~
행렬에서 곱셈의 교환법칙이 성립하는 경우는 A 가 B또는 B의 역행렬에 관해 표현되면 됩니다.
ㄱ 에서 ㅡ2B 를 우변으로 이항하면 A= 2B+E 로 A가 B에 관해 표현되죠?? 그럼 교환법칙이 성립하는 겁니다.
언제 반례를 다 찾고 있습니까 ㅡㅡ; A^2=B^2 처럼 양쪽 다 거듭제곱 형태면 교환법칙이 성립하지 않구요.
한 행렬이 다른 행렬의 다항식 형태로 표현되는 경우라고 해야 좀 더 맞는 표현일 것 같네요.
간단한 경우로 xA + yB =kE 가 되는 형태는 제 자료에도 명시를 해 두었습니다.
A가 B에 관해 표현된다는 말은 'A= B에 대한 다항식'의 형태를 말씀하시는 것 같은데,
그 경우는 설명에서는 빠져 있던 것 같습니다.
그리고 반례를 찾는 것은 답을 확신하기 위한 수단입니다. 제 원고를 보시면 알겠지만
반례를 찾는 과정 중 '여기까지 의심해 보고 시간이 없으면 넘어가라'고 서술을 해 두었습니다.
하지만, 문제를 풀다 보면 이런 교육청 문제처럼 정형화된 형태만 등장한다고 장담할 수 없으므로,
적절한 반례를 찾는 것 역시 연습의 대상이 되며, 그렇기 때문에 한 문제를 깊이 공부하기 위한 자료의 특성상 반례를 찾아가는 흐름에 대해서 서술했습니다. 그리고 제가 찾은 반례도 하늘에서 뚝 떨어진 것이라기보다는 어느 정도 논리에 의해서 반례의 범위를 줄이는 과정에 초점을 맞추어 서술하고자 하였습니다.
행렬의 성질 문제는 수능에 나온다면 계속 지금까지 보지 못한 형태로 제시할 확률이 높기 때문에,
특정한 행렬의 구조들을 달달달 외우기보다는 문제에서 추론해서 풀어 가는 것이 필요합니다.
그렇기 때문에 이 자료에는 다소 장황할지 모르지만, 최대한 일반적이고 보편적인 추론 과정을 적고자 하였습니다.
부족한 자료에 대한 비판 감사합니다.