제가 이 문제 처음 풀었을 때 모 선생님의 절묘한 풀이도 보았지만, 그건 시험장에서는 결코 쉽게 생각할 수 없는 방법이었습니다.
'기본에 충실하면서', 접선식의 기본 공식을 떠올리세요.
(a, 0)과 (0, a)가 그래프 위의 점이 아니므로, 그래프 위의 임의의 점에서의 접선식이 저 두 점을 지나도록 식을 세우면 됩니다.
두 점을 지나는 접선식이 서로 다른 접선이므로, 그래프 위의 임의의 두 점을 잡고 식을 세웁니다. 임의의 두 점은 (t, t(t)), (k, f(k))로 둡시다.
y=9t^2(x-t)+f(t), y=9k^2(x-k)+f(k) 이렇게 접선 식을 세우면 되겠죠? 이 기본 공식만 떠올리시면 다 푼거나 마찬가지입니다. 이 그래프가 각각 (a, 0)과 (0, a)를 지나므로 식에 대입합니다. 그리고 두 접선이 평행하므로 9t^2=9k^2 -> t=-k(두 접선은 서로 다른 접선이므로)임을 알 수 있습니다. 미지수 a, t, k 3개에 식이 3개 나왔죠? 연립하시면 됩니다.
이거 접점 두개중에 하나 부호반대로 푸는거였나.....잘기억안나는데 기함수개념써서 접점두개구하는걸로 기억해요
윗분 말씀대로 아마 절대값은 같지만 부호가 다른 점이 나올꺼에요.. 저도 거기까지만 기억나네요
제가 이 문제 처음 풀었을 때 모 선생님의 절묘한 풀이도 보았지만, 그건 시험장에서는 결코 쉽게 생각할 수 없는 방법이었습니다.
'기본에 충실하면서', 접선식의 기본 공식을 떠올리세요.
(a, 0)과 (0, a)가 그래프 위의 점이 아니므로, 그래프 위의 임의의 점에서의 접선식이 저 두 점을 지나도록 식을 세우면 됩니다.
두 점을 지나는 접선식이 서로 다른 접선이므로, 그래프 위의 임의의 두 점을 잡고 식을 세웁니다. 임의의 두 점은 (t, t(t)), (k, f(k))로 둡시다.
y=9t^2(x-t)+f(t), y=9k^2(x-k)+f(k) 이렇게 접선 식을 세우면 되겠죠? 이 기본 공식만 떠올리시면 다 푼거나 마찬가지입니다. 이 그래프가 각각 (a, 0)과 (0, a)를 지나므로 식에 대입합니다. 그리고 두 접선이 평행하므로 9t^2=9k^2 -> t=-k(두 접선은 서로 다른 접선이므로)임을 알 수 있습니다. 미지수 a, t, k 3개에 식이 3개 나왔죠? 연립하시면 됩니다.
그 강사분이 누군가요??
좋은 이야기로 언급한 것도 아닌데 왠지 말하기 꺼려지네요.. 오르비에서 자주 언급되는 선생님 중 한 분입니다. 곰탕재료는푸 님이 말씀하신 기함수.. 표현을 해설 중에 언급하셨는지는 모르겠지만 기함수의 특성을 가지고 푸셨죠.
오늘 푼거닼ㅋㅋ 접선의 방정식 구하면 그냥 나와욥 접선의 방정식 두개 연립하면요
기계적으로푼다면 하라남편님말처럼하면되지만 이런간단한식이나 함수가 주어진경우는 조그만생각을하면간단히풀수잇어요 당연히 기함수특징 "대칭"으로풀어야되는거맞아요
기함수라는거파악하면 당연히 대칭이라는 특징이생각나야되는거맞습니다(변곡점)