부정적분과 정적분
게시글 주소: https://h.orbi.kr/00031443253
그냥 간단하게 교과서 한번 읽어봅시다.
작년까지는 정적분을 급수로 정의했어요. 이때 조건으로
'f(x)가 연속일 때'라고 전제를 달았죠. 그래서 피적분함수가 무조건 연속이라는 결론이 나왔어요.
올해는 좀 정적분에 대한 정의가 달라졌군요. 먼저 부정적분의 정의부터 봅시다.
교과서에서는 부정적분을 미분의 역연산 으로 정의하는군요.
이후 기호와 적분상수를 정의합니다.
교과서에서 부정적분을 구하는 방법을 좀 불친절하게 알려줘요.
A를 미분하면 B니까 B를 적분하면 A이다....
수2 범위에서는 다항함수만 다루니 괜찮은데 미적분으로 넘어가면 알고있는 대부분의 함수를 미분할 수 있지만 알고있는 대부분의 함수를 적분하는게 굉장히 불쾌(?)하죠.
부정적분에선 함수의 합,차,실수배를 분리하여 계산할 수 있다고 알려져있어요. 함수의 극한에 대한 성질과 비슷하지만 곱과 몫은 쪼갤 수 없죠.
이는 나중에 정적분에서도 동일한 성질을 가지게 됩니다.
또 곱과 몫은 이후 치환적분과 부분적분을 배우며 해결하게 됩니다.
그리고 바로 정적분을 정의합니다. 올해부터는 정적분을 이렇게 정의한다고 해요.
역시나 f(x)가 연속이라는 전제가 들어갑니다.
정적분은 부정적분의 변화량 으로 정의하네요.
조금 더 생각해본다면 교과서에서 정적분의 값을 구하기 위한 수단 중 《부정적분을 구하여 그 차이를 판단한다》가 가장 기본이 된다고 볼 수 있겠네요.
다음으로 적분과 미분의 관계를 정리해줍니다.
어! 신기한게 보이는군요. 이거 부정적분의 정의와 똑같지 않나요?
겉모습은 정적분처럼 보이지만, 여러분은 이 함수를 부정적분이라고 인식하시는게 문제를 풀 때 편할거에요. 정말 간단하게 생각해보면 부정적분은 함수이고 정적분은 함수의 차, 즉 값이라고 생각할 수 있죠.
정적분에는 성질이 하나 더 있습니다.
정적분의 정의를 떠올린다면 증명은 쉽게 하실 수 있을거에요. 너무나도 당연하고 자주 사용되는 성질인데 정작 문제를 만났을 때 제대로 사용하지 못하는 경우가 많더라고요. 이 성질이 그대로 대학의 논술 제시문에도 종종 나옵니다. 머릿속에 꼭 넣어두고 다닙시다.
교과서 재밌어요 읽어봐요
0 XDK (+3,000)
-
3,000
-
기차지나간다 0
부지런행
-
생투 0
지투로 바꿀까요 말까요 근데 염기조성 코돈이 일년 더한다고 느는 유형은 맞음??
-
ㅇㅂㄱ 1
또 자고왔어요
-
국숭 이상은 꿈도 안 꾸고 있는데 혹시 이 정도 성적이면 어디 정도 갈 수 있을까요...
-
미치겟네 3
왜잠이안오지
-
의사들이 무슨 감사한 의사 명단을 만들어서 교묘하게 사직, 휴학에 동참 안하는 분들...
-
야식 먹을까 1
그보다 아침에 가까운데 벼고프당
-
안자는 사람 3
ㅇㅇ
-
낙서 재밌음 1
공부보다 백배
-
봐주셔서 감사합니다.
-
기하 사탐러라 미적, 물리를 안했는데 산업공학과에서 학점 따기 많이 버거운가여..?
-
아이고 사람살려
-
잔다 2
르크
-
실채나오면 떨어지겟지만… 만약 이 점수로 스나해서 운좋으면 될까요…?
-
시대는 6%라 하고 메가는 13%라는데 차이가 너무 심한거 아닌가
-
수능도 5과목인데 비슷한거 아님?
-
기차지나간당 9
부지런행
-
잘 잤당 2
일찍 일어나쏭
-
이거 치 가능? 7
어디든 제발….
-
이지영 풀커리 타는건 비추인가요?? 대성 끊을거라 임정환 이지영 중에 고민중이에요
-
왜내가하면그맛이안나지
-
의뱃 색도 바꿔주면 안되나??
-
얼버잠 1
다들 굿밤
-
지금 굳이 자려고 애쓸 필요는 없는듯
-
캬 4
ㅁㅌㅊ?
-
개구라입니다 죄송합니댜 ㅠㅠ 예비 고3 국어 커리 평가좀여 국어 : 독서(김동욱)...
-
손바닥으로 하늘 가리는거 개잘하네;; 확실히 동덕여대보단 똑똑하다
-
잠이 안옴 4
-
원랜 미적이라 확통쌩노베인데 여러 요인 따지다보니 확통에 마음이 가서 그냥 지금...
-
동시에 학사 두개 준비 가능??
-
탐구 털려서 다시하면 ㅠ 수학은ㅜ뭐해야할까요 기출은 보기만 해도 그간의 고생이...
-
(전과있는사람한테 같이사는조건으로 계약서쓰고 수능준비한다는썰) 씨발 말이되냐고 ㅋㅋㅋㅋㅋ
-
선데이는 명전만
-
수변최고돼지국밥 본점 왔는데 맛있네오 웨이팅 말도안되게 엄청나다는데 월요일새벽이라 스근하게 입장
-
욕심 없는 사람이면 모르겠는데 욕심은많은데 노력을 안하면 정말 불행하게되는거같음...
-
서로 요구하는게뭐임뇨 [ ex) 물리는 변화량체크를잘해야함 화학은 계산이빨라야한다등등..]
-
이 정도면 어느 정도 갈 수 있나요? 이것저것 찾아보고 있는데 누구는 건대도 힘들...
-
진짜임뇨
-
내가 물스퍼거가 되면 되는 것 아닌가!
-
술마셔서 땡김뇨
-
잠뇨 9
ㅂㅂ
-
대학가면 이런것도 알려주나 일단 책이라도 읽어야하는데
-
조회수 대비 업로드 되는 글 수 이게 맞아?
-
꾸덕 바삭한 쿠키가 먹고싶다
-
옯창임?
-
이해가 ㅈ도 안됐음뇨 ㄹㅇ
-
https://youtu.be/rx6gz2I_suk?si=F7ltEkRc_jjWSiN...
-
내신 별로 안남았긴했는데 자료가 너무없어서,,1년에 5만원이고 사람모일때마다...
-
야식에 혼술 4
이때가 요즘 내가 제일행복한 순간일듯
이제 등적 개념이 없으니 리만 적분을 도입해도 문제 없을....
근데 배우는 사람 입장에서는 더 빡세진 것 같아요. 기존에 배운 시그마 개념을 극한으로 보낸 거라는 이해보다는 그냥 '미분하는 거 역으로 생각해보니, 이게 적분이라는 거야!' 이 관점은 절름발이 교육 같다는 생각이...
의대를 오니까 그 이후를 안배우더군요
근데그럼 불연속함수의 적분도 나올수 있는건가요..?
절대 안될겁니다. 적분의 정의를 보시면 전부 피적분함수의 연속을 전제하고 있어요. 적분가능성은 엄연히 교육과정 밖입니다
아 그쵸? 맨처음에 이전 교육과정에서는 피적분함수의 연속성이 보장됐다고 그 후 언급이 없으셔서 혹시나.. 했죠
161130에서도 대놓고 물어보죠
191030 정도가 마지노선일듯
미분의 역연산이라
좀 더 일반화되었네요
그쵸 배우는 입장에선 더 간단한 느낌도 있고
과외하삼
문과수학에서 구분구적법 왜 뺐냐고 ㄹㅇㅋㅋ 애들 이해시키기 더 빡세졌네