행렬 조금 많이 이상한 문제
게시글 주소: https://h.orbi.kr/0003255464
좋은 풀이를 구합니다ㅎ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
방학때 대전갈까 7
성심당에서 튀김소보로를
-
논리실증주의자는 예측이 맞을 경우에, 포퍼는 예측이 틀리지 않는 한, 13
논리싫증주의자는 관심이 없다
-
다들 최애 만화 머임 32
체인소맨...
-
다른 학교에비해 이상하리만큼 확률이 높은데 오류일까요? 이유를 아시는분이 있으신가요??
-
보고 웃참함 ㅋㅋㅋ 즐기면서 푼듯
-
겨울에 아이스크림은 별로야? 쌤 보러가면서 쌤 반 애들 간식 사가려고 하는데 뭐가...
-
서강대 논술 2
진짜 다맞아야 붙는거지 올해 오후 공대 봤는데 그냥포기해야되는거지
-
오늘 기분조아요 6
스카에서 래몬사탕 먹었는데 맛잇엇음뇨
-
존나 억울함
-
계획상으론 12월말쯤에 이원준t 브크 개강할때 맞춰서 시작하려고 하는데 늦을까요?...
-
옯비탈퇴 아마 할듯 13
에휴이 수시도 가망없어보이는데 이제 입시판에서 할것이없네요 성불할때가 왓다...
-
헤응 5
-
귀가!! 6
오늘은 친구들이랑 스카 갔다 와서 그나마 나은 느낌 그동안 계속 혼자 해서 잘 안...
-
아무글도 안쓸때도 200씩은 찍히는데
-
맞팔하실분 9
구합니다
-
0.01점 차이 8
ㅋㅋㅋ
-
경희대 국캠 5
고딩 동기, 후배들 체대 많이가서 놀러 자주가는데 그래서 마치 모교같은 느낌
-
2024년 오르비 선정 최단기퇴물
-
내신대비 말고는 필요없는거죠? 경사관도 요즘은 수능유형으로 나오는듯 해서
-
계속 듣는 노래만 듣네 10
나도 늙었나
-
동덕여대 출신은 이마에 낙인 새기고 다녀야한다고 생각합니다. 2
사회속에 은근슬쩍 스리슬쩍 스미어들면 조금 그렇자나요
-
수능대비 리트 2
추리논증은 안하는게 맞죠?
-
헉
-
진로과목 제외 수행 진짜 끝나는데
-
지금 60페이지임 ㅈ됐다 이거 어케암기하냐
-
23이 제일 좋았던 것 같음... 24때 공통 2틀 93점이었는데 2등급뜨고 교차는...
-
문장을 수동적으로 이해하는 것이 아니고 호기심을 가지고 질문하고 이에 답하면서, 즉...
-
쉽다고는 하는데 솔직히 작수보다 어려운거같은데 작수는 국어가 핵불맛이라 영향...
-
컷(최저) 3
3합5 될까요 진짜 ㅠㅠ
-
ㅠㅠㅠㅜㅜㅜ
-
요즘 메디컬을 워낙 많이 가는 추세여서 연고대를 최상위권이라고 하면 다들 동의...
-
갑자기 훅 내리네
-
인트로가 휘파람인데 따안딴 딴!딴!딴! 따 딴!딴!딴! 따 딴!딴!딴! 따다...
-
칸X타님? 장난 그만쳐주세요
-
설교 = 동홍 경교 = 세단 지방 = 인서울끝자락 ??? 뭐지
-
진학사가 걍 개짠거겠죠? 지거국 다 3~4칸이던데 지사의도 비슷하고
-
쉬운문제를ㅋㅋㅋㅋㅋㅋ실수로잘못푼것도아니고 ㅋㅋㅋㅋㅋㅋㅋ 마킹을잘못햇다고? 진짜로?...
-
뭐 상관없겠지...
-
26수능 보는데 25수특 독서문학 풀어보는거 어케 생각하시나여 9
그냥 학교에서 내신으로 사래서 독서랑 문학 사긴했는데 한번도 안풀고 버리긴 좀...
-
이거 지금 제일친한친구의 제일친한친구가 (서로는모름) 작년여름에 자.살하기 전까지...
-
당시에 편집하다가 개빡세다 싶어서 걍 방치 → 1학기 좀 놀면서 방황 → 2학기...
-
슬슬 폼이 오르는게 체감되네요
-
연락 안하고 사는 성격이라 그런지 군대 오고나서 막상 휴가 나갈라니까 나가서 볼...
-
남캐일러 투척. 7
음 역시귀엽군
-
아 하기싫다니까??? 하기 싫다고 이새끼야 하기 싫다고...
-
와 어지럽네 0
칸타타님이 올린 표봤는데 확통 백분위가 저렇게나오면 진짜 좆되는건데 진학사 확통도...
-
달아주시면
-
미리 매맞는중 0
고속에 미리 백분위랑 표점 낮춰서 넣음… 절망적인 수치를 먼저보는게 나을거 같다.....
-
ㅋㅋㅋㅋㅋㅋㅋㅋ 2
4번이요. ㄷ은 그 때처럼 하거나 혹은 다른 식으로 증명할 수 있고, 그러면
O=(A^2 -AB+B^2 )(A^2 +AB+B^2 ) = A^4 +A^2 B^2 +B^4 이니까 ㄱ도 참이고요.
ㄴ은 ㄷ증명과정에서 조금 생각해보면 반례가 나오는데
A=(0 0 // 0 1) , B=(0 1 // 0 0) 이요~
ㄴ. 에서 제시하신 반례는 조건식에 대입하면 영행렬이 아닌 A가 나와 조건을 성립하지 않는 것 같습니다 ^^;;
아 ㄴ 맞는데 제가 또 계산에서 실수를 했네요..ㅎㅎ 죄송합니다.. 따로 올리겠습니다~
ㄱ에서 인수분해가될려면교환법칙되야되지않나요? 결론적으로 조건이용하면 ㄱ이 참이긴한데
ㄱ.자체는 주어진 조건만으로 보일 수 있는 게 맞습니다. 다만 그게 성립한다고 교환법칙이 성립하는 지는 별개의 문제이겠죠ㅎ
ㄱ. AB=A^2 + B^2 이므로 A^2B=A^3 + AB^2, A^2 B^2=A^3B + AB^3 = A^2 AB + AB B^2 = A^2(A^2 + B^2) + (A^2 +B^2)B^2 = A^4 + 2A^2B^2 + B^4 이므로 A^4+A^2B^2+B^4=O(참), ㄷ.도 전의 syzy님 풀이로 참인데.... 결국은 ㄴ.이 문제네요. 반례라..... 쉽지않네요.
ㄱ은 주어진식 왼쪽오른쪽에 A, B열심히곱하면 나오구요.
ㄴ, ㄷ은
A = 0 0 , B = 0 1
1 0 0 0
이런행렬 반례가 있네요
써주신 반례는 여전히 조건식을 만족하지 못하네요.^^;;;
AB = ( 0 0 / 0 1) 나오잖아요.^^
ㄴ도 ㄴ이지만 ㄷ도 결코 간단하지 않습니다. 예전 syzy님의 풀이에서 우변이 영행렬이 되는 부분이 약간 미묘한데 그걸 엄밀히 보여야 정답으로 인정될 수 있을 것 같습니다. 그리고 다들 ㄴ의 반례를 고민하시는 것 같은데... 증명은 불가능할까요? ^^;;
그쵸....^^;; 사실 좀 미묘하긴 하지요.ㅎㅎ 언뜻 드는 생각이 심한 노가다...밖에는 없어서 그냥 인정하기로 한 것 같습니다.ㅠㅠ