저번에 올렷던 사차함수 해설 ㅋㅋ
게시글 주소: https://h.orbi.kr/0003277466
이해 안되면 댓글좀 ㅎ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
뭔가 위에 대학 이름이랑 같이 붙어있으면 너무 위에 쏠려있는 느낌서울대나 경희대처럼...
-
기상 완료 알바 가기 시러
-
진짜 인재 놓친거다.
-
오르비 망했나
-
이번수능 대충 언미영사문생1 23212 받았습니다 순수과학에 흥미가 생기기도했고,...
-
갈드컵 안열리네 예전에 이거갖고 말 엄청 많았던걸로 기억하는데
-
경북대 치대 논술 가야할까요??ㅠㅠ 지금 6칸입니다ㅠㅠ
-
삼반수 할까 2
작수 55332 올해 33231 흠
-
내신 대비로 어떤 문제집이 괜찮은가요???
-
어느길로갈까요 7
젤 무서운 길을 8분 정도 걸리고 가로등 없음... 다른 길은 15분에 가로등 몇개...
-
재수는 싫고 반수하면 놀다가 제대로 못할거같고 남은건 군수뿐인거같은데
-
집이드 편의점최고
-
문제집 분리수거 2
이번 수험기간동안 푼 문제집들 다 종이 버리는곳에 버리면 될까요? 스프링은 없어요
-
치감걸린듯 4
왜 힐이안되냐
-
기적의 수면패턴 3
8시수면 4시반기상 ㅋㅋ
-
알바 헬스 대학공부
-
처음부터 마지막까지 네 맘을 알고 싶은걸
-
반갑습니다. 10
-
아낌없이주는나무는이제없다..
-
전시즌 플레계정인데 랜만에 켜서 한판해서 첫판 이겼더니 실버 4를 주네
-
벌써 2028 수능 준비하는 사람 있음? 아는 08 지금 자퇴하고 2028 수능 준비하는데
-
이번 겨울부터 시대 라이브반 수강하려고하는데 언제쯤 개강하나요??
-
나도 그때까진 생지가 무슨 이과냐고 생각하면서 이과가 물화중 하나도 안 하는게...
-
방금 라면먹고 3
식은 밥말아먹는 중인데 살안찌겠죠? 오늘 아침안먹었고 점심 저녁만먹음 점심엔 떡볶이...
-
행렬 공간벡터 모비율의 추정 롤백시킨건 근본스러운데 3
행렬은 공통수학1에 있어서 간접 연계로 들어가는데 수학적 귀류법이나 순열처럼...
-
언 미 영 물1 지1 동대나 홍익대 공대는 가능할까요...?
-
지각안할라면넉넉히 6시50엔 일어나야하는데 ㅅㅂ오늘 ㅈㄴ쳐잣더니 잠안옴..ㅈ댬
-
기숙학원재수는 1년6개월동안 공부해야하고 기간동안 수능을 볼 수 없으며...
-
위치 신경안쓰고 학교 지원이나 아웃풋 측면에서만 ㅇㅇ 입시 커뮤 말고는 어떤 기준으로 알아봐야됨?
-
ㅏ 드디어 1
올 한해를 알차게 보내기 위한 인강 커리 N제들 계획을 다 세웠다 이대로만...
-
세종대 논술 0
보통 수학 몇등급대가 오나여? 미적 안한 기하러 합격 가능세계잇음?
-
07들에게 힘의 차이를 보여주기 위해
-
.
-
이새끼들 안죽냐 변기물로 익사시킴
-
긴장되네요.. 0
인생이 바뀌는 시험이라 그런지
-
올인원, 단어, 유형독해만 듣고 빈순삽은 교재없이 강의만 들어도 되나요? 목표는 2등급 이상입니다.
-
ㅈㄱㄴ 실모에요 N제에요?
-
이번에 보니까 호텔관광이랑 묶어서 계열로 뽑던데 2학기끝나고 전공 선택할때...
-
음..
-
의치한은 진짜 그런가요
-
계정은 남겨 두겠음
-
우울글 3
(반말주의) 사실 나는 의대가 너무 가고싶었다. 아니, 의사가 되고 싶었다는 말이...
-
은 없나여?
-
예비 고3인데 이 시점에 수 상하 복습해도 괨찮을까요… 4
초딩 때 수 상하 배우고 성적 개판 치다가 올해 시대 스파르타 다니면서...
-
고2까지 공부 던지고 펑@펑 놀기 고3때 공부 시작해서 재종 들어갈 성적 띄우기...
-
그냥 접겠다..
-
공통수학 (22개정) 공부 통합사회 (22개정) 공부 독서 심슨 정주행
-
자라. 4
3시 전에 자야지
-
이건 팩트인듯요
-
가천대 명지대 경기대중 셋다 붙을수있다고 가정하에 어디가 가장 괜찮을까요??
가장 기본적인걸 설명 안했는데
h(k)가 불연속이 되는 점의 수는 원점에서 그을수있는 접선의 숫자랑 동일해요 ..
(접선에서 위아래로 살짝만 돌려보면 미분가능한 점의수가 바뀌는걸 알수있습니다
즉, 원점에서 그은 접선의 기울기가 h(k)가 불연속인 k값이 되죠. )
그리고 h(k)가 양수에서만 3개 불연속이니까
원점에서 그은 접선의 기울기는 셋다 양수여야하고 기울기가 음수인 접선은 존재해선 안되요
태클걸어서 죄송하지만..ㅎㅎ
'h(k)가 불연속이 되는 점의 수 = 원점에서 그을 수 있는 접선의 숫자' 는 엄밀하지 못한 말이고요,
4차 이하 다항식의 경우에는
'h(k)가 불연속이 되는 점의 수 = 원점에서 그을 수 있는 접선 중 접점에서 짝수중근을 갖는 것의 갯수' 라고 해야 맞을 것 같아요.
(즉, 변곡점에서의 접선이 원점을 지나는 경우라면 h(k)가 불연속이 되지 않을 수도 있을테니까요.)
일반적으로 5차 이상 다항식 혹은 일반적인 미분가능 함수의 그래프에서는 이것조차도 참이 아닐 것 같아요. 접선이 있음에도 h(k)값이 변하지 않고 연속이 되는 경우도 있을 수 있는 거 같아요~
아무튼 이 문제의 경우에는 이렇게 해도 다 참인 것 같아요~ 풀이 꼼꼼히 잘 써주셔서 고맙고요!
뭔가 되게 정리해서 말하기 힘든개념이네여 ..
제가 내놓고 제가 모르다니 ㅠ
ㅎㅎ 겸손하시다는.. 다항함수 경우만 봐도, 차수가 올라가면 함수가 위로 올라갔다 내려갔다 여러번 할 수 있으니까, 동일한 한 (원점 지나는) 직선에 함수가 여러 번 접할 수 있는데, 한 쪽에서는 위로 볼록하면서 접하고, 다른 쪽에서는 아래로 볼록하면서 접하고 이런 식일 수 있어서 그런 거 같아요~ 제가 봐도 정리해서 말하기 참 힘든 거 같아요ㅎㅎ
친절한 풀이 감사합니다. 많은 도움 되었어요^^
네넴 도움 되셨다니 ㅎ
다행이네요
오류있는듯..? n이상수란말이주어져야할듯요.. 제 풀이가 잘못된건지..ㅎ 오른쪽 극소가 더 큰 w자 그리고 첫번째 증가구간 밑과 왼쪽극소값 사이에 원점을 두면 오른쪽극소 주위에서 접할때 기울기 m 왼쪽 극소주위에서 접할때 기울기 16ㄱ기울기가 무한대로 갈때 미분불가능점 2개에서 1개로 변화.. 즉 이렇게 그려도 문제조건에 합당한 그래프발견가능.. 하지만 답은 구할 수 없음 ㅋㅋ
아 참고로 원점은 오른쪽극소보다 아래요
님이 올리신 해설도 기울기 무한대에서 불연속이네요..
n은 당연히 상수라고 생각하고 있었는데 ㅎ
그리고 기울기 무한대일땐 따질 필요 없을듯 합니다
점근선 개념이랑 비슷하다고 생각하는데 ;;
왜나면 h(k)가 k를 정의역으로 하는 함수이고 , 기울기가 무한대일땐 k가 무한대로 간단건데
그건 사실 불연속이라고도 하기 애매한 개념이죠 .. 점근선과 비슷