한달동안 생각했는데 안풀려서 다시 질문드립니다
게시글 주소: https://h.orbi.kr/0003290626
중앙교육 수학익힘책 p320 10번 문제입니다
한번 올렸던 질문입니다 한달내내 생각한건 아니지만 틈틈이 생각해도 아이디어조차 떠오르지가 않네요
n이 홀수이면 nCr을 n으로 나누면 왜 나누어 떨어지지않는지 설명해주세요
단, r은 0<r<n 입니다
n이 짝수일때는 나누어 떨어지나요??
익힘책문제라 계속 생각하면 풀리겠지 생각했는데 안 풀리네요
답변 부탁드립니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
미래는 맥주에 있다
-
ㄹㅇ 갑자기 이렇게 질문받으니까 생각이 안남
-
ㅇㅈ 4
수익률ㅇㅈ 불쌍하면덕코라도주세요...
-
솔직히 올해 디카프였나 생명쪽 실모 평은 굉장히 구리긴했음ㅋㅋ
-
하 모르겠다 0
컷이고 만표고 스트레스만 받네 과목선택을 뭣같이 해서..논술 붙었으면 좋겠다
-
걍 처잘까 1
흠
-
옯스타 맞팔해요 7
방굼 만들엇어요 본계든 부계든 다 오케이에요 칭구해요~
-
고2때부터 정시준비해서 강기분 새기분끝냈고 지금 검더텅하고 있는데 겨울방학 때 뭐해야될까요?
-
1. 책이나 괜찮은 유튜브로 주식에 대한 기초 공부를 하면서 국장은 하지 않는다...
-
실모20회분 35000원 무료로 올려주는 실모도 한 20개였나 정확하진않은데 10개이상됨
-
생윤은 무조건 챙길수밖에 없을거같고.. 사문은 도저히 못하겠어서 만약 삼반수...
-
오징어들은 어떻게 살라고 커뮤에서조차 열등감을 느껴야 하다니 ㅆㅂ 예쁘고 잘생긴...
-
폰겜 추천좀 1
힐링되는걸로...... 마크빼구요ㅋ
-
개열받네 6
하... 난걍뒤져야지
-
ㅋㅋㅅㅂ
-
2026 수능 0
뿌시고 올 team 04는 ㄱㅊ!
-
걍 전부 쓸어버리고 싶네
-
ㅈㄱㄴ
-
실채 나오고 텔그나 진학사 변경되는데 몇 일 걸리나요?
-
아니시발 3
그아아ㅏ악
-
볼륨도 개크고 어느정도 개념 있는 상태에서 들어야하나? 난 2배속으로 들었는데 정말...
-
ㅇㅈ 22
꼴에 장발하는 개찐따옯붕이다 됐음??
-
팥붕보다 슈붕임 4
진짜 오늘 두개 먹으면서 한번 더 느꼈다
-
한문제 더 맞춘 성적 넣어보기
-
띠발 족같네 14
족같다 저 와꾸로 오르비 왜 함.
-
올해 국잘수잘탐망이 많아서 표본에 비해 갈수있는 대학이 널널해져가지고 내가 가능한...
-
나이테는 잘 보이지...
-
ㅇㅈ 1
-
19번까지 풀어서 16개 맞았고 그러니까 13,14,15 틀렸어요 13번 어느...
-
원랜 아무리 사탐으로 꿀빠니 뭐니 해도 사탐 골라서 취업도 미래도 없는 문과로...
-
잘자요 4
내일봐요
-
미소녀로 다시 태어나 있을 테니까!!!
-
https://www.mycsat.re.kr/report/index.do...
-
크리스마스 6
다가와도 아무느낌도 없구나 외로움을 못느낄정도로 감정이 무뎌졌나
-
못참고 샀는데 제가 대충 경외시건 라인인데 궁금해서 스나용으로 성한중 라인대 확률...
-
돌아보면 제 개념에 빵꾸가 왕창 나 있었던... 변명 못 하겠네요 이렇게 된 이상...
-
2-3등급 학생들에게 독인 시험이 아녔나요? 준킬러 없이 극단적으로 나뉘니까..
-
중앙대 경영 1% 외대 경영 8% 외대 Language&AI 41% 홍대 A학과...
-
작년기준 컷 1
작수보다 이번 수능이 만표가 낮은것 같은데 그러면 컷 자체도 떨어진다고 봐야하나요?
-
어려울 필요도 없고 딱 준킬러 역할만 하더라도 풀다가 시간 쓰고 풀다가 실수하고...
-
해병대 전우회 고려대 교우회 호남 향우회 참고하셔서 성공적인 사회생활 하시길
-
지원 조건에서 없어진건 알고있고 표점 생각했을 때 투과목이 필수인 건가요??
-
유저 차단 어케함요? 12
ㅈㄱㄴ 아무리찾아봐도없던뎅
-
미적 14 15 20 21 27 28 다 맞추고 22 29 30 틀리면 '1컷'...
-
옵붕아머해 8
머해??????????
-
술 마시는 것도 아니고 게임 하는 것도 아니고 걍 붕어빵 열 마리 사다가 나눠먹고...
-
거기까지 가서 한국어는 별로 듣고싶지 않은데..
-
안 그래도 애매함데 남중남고군대남초과라서 ㅈㄴ까이는 듯 근데 또 애인은 내 얼굴 좋아하고
문제가 nCr 에 대해서 묻는거에요? 시그마 nCr을 묻는거에요?
문제가 nCr 에 대해서 묻는거에요? 시그마 nCr을 묻는거에요?
nCr에 대해서 묻는겁니다
고등학교 1학년 조합 내용입니다
n=3,r=1 3C1 /3 =1 나눠 떨어지는데요 ?
nCr / r = n * n-1Cr-1 이라서 r로나누면 나눠떨어지기는하는데 문제 맞는지 다시확인좀.
이미설전컴님 답변 고맙습니다
정확하게는
(1) n(n+1)(n+2)...(n+r-1)은 r!(r팩토리알) 로 나누어 떨어진다
(2) n이 홀수이면 nCr은 n으로 나누어 떨어진다(단, 0
이건 n이 짝수 홀수냐에 따라 성립하고 안 하고의 문제가 아니라, 약간 복잡합니다.
n을 소인수분해해서 n= p_1 ^e_1 * p_2 ^e_2 * ... * p_s ^e_s 이 되었다고 할게요. (p_i 들은 서로 다른 소수, e_i 들은 자연수.)
예를 들어 n=2^3 * 3^2 이면 p_1 =2 , e_1 =3 , p_2 =3, e_2 =2 이런 식이겠지요.
먼저, m! 에 들어 있는 소수p_1의 개수는 sum_{k=1}^{무한대} [ m/(p_1 ^k) ] 입니다. ( [ x ] 는 가우스 기호로 x 이하의 최대 정수 나타냄.)
따라서 nCr = n! / ( r! (n-r)! ) 에 들어 있는 소수p_1의 개수는 sum_{k=1}^{무한대} ( [ n/(p_1 ^k) ] - [ r/(p_1 ^k) ] - [ (n-r)/(p_1 ^k) ] ) 입니다.
따러서 n을 나누는 소수 p_ i에 대해서(i=1,2, ... ,s) 위의 값 sum_{k=1}^{무한대} ( [ n/(p_i ^k) ] - [ r/(p_i ^k) ] - [ (n-r)/(p_i ^k) ] ) >= e_i 이면 nCr 이 n의 배수가 됩니다.
이를 달리 말하면, n, r, n-r 세 수를 p_i 진법으로 표기해서 r과 n-r을 더하면 n이 나올텐데, 이 때 자리올림이 e_i 번 이상 나오면 nCr이 n의 배수가 됩니다.
(자리올림을 정확히 정의해야 하는데, r과 n-r의 p_i진법 표현에서 대응되는 동일한 자리번째 숫자끼리 더해서 그 뒷자리로(일의 자리 가까운 쪽을 앞쪽으로 보겠습니다.) 자리 올림이 있느냐 없느냐 보는 개념입니다. 이 때 더 앞쪽자리에서 올라온 1이 있다면 이것도 물론 더했을 시, 자리올림이 있는지 없는지를 보는 것이고요.)
예를 들어 9C3이 3을 몇 개나 가지고 있는지 보려면 (3으로 몇 번이나 나누어지는지..)
n=9, r=3, n-r=6인 상황에서 3진법으로
r = 10
n-r= 20
n =100
이렇게 되는데, 1의 자리에서 3의 자리로는 자리 올림이 없고, 3의 자리에서 9의 자리로는 자리 올림이 있으니까, 총 자리 올림 횟수는 1. 따라서 9C3은 3을 정확히 1개만 가지고 있는 것이니, 3^2의 배수는 될 수 없겠지요.
8C3을 보면, n=8, r=3, n-r=5이고 2진법으로
r = 11
n-r= 101
n = 1000
에서 1의 자리->2의 자리 로 자리 올림 있음. 2의 자리->4의 자리 로 자리 올림 있음. 4의 자리->8의 자리 로 자리 올림 있음. 총 횟수 3.
따라서 8C3은 2를 3개 가지고 있고, 2^3의 배수임. (2^4의 배수는 아니고요)
syzy님 정말 고맙습니다
정말 상세하게 성의있게 가르쳐 주셔서 감동입니다
정말 감사해요
댓글 달아주신 모든분들 정말 고맙습니다
큰 도움이 되었습니다