2015학년도 6월 포카칩 모의평가 지면해설
게시글 주소: https://h.orbi.kr/0004601921
(A형 해설은 목요일에 업로드 예정입니다.)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이번수능 대충 언미영사문생1 23212 받았습니다 순수과학에 흥미가 생기기도했고,...
-
갈드컵 안열리네 예전에 이거갖고 말 엄청 많았던걸로 기억하는데
-
경북대 치대 논술 가야할까요??ㅠㅠ 지금 6칸입니다ㅠㅠ
-
삼반수 할까 2
작수 55332 올해 33231 흠
-
내신 대비로 어떤 문제집이 괜찮은가요???
-
어느길로갈까요 7
젤 무서운 길을 8분 정도 걸리고 가로등 없음... 다른 길은 15분에 가로등 몇개...
-
재수는 싫고 반수하면 놀다가 제대로 못할거같고 남은건 군수뿐인거같은데
-
집이드 편의점최고
-
문제집 분리수거 2
이번 수험기간동안 푼 문제집들 다 종이 버리는곳에 버리면 될까요? 스프링은 없어요
-
치감걸린듯 4
왜 힐이안되냐
-
기적의 수면패턴 3
8시수면 4시반기상 ㅋㅋ
-
알바 헬스 대학공부
-
처음부터 마지막까지 네 맘을 알고 싶은걸
-
반갑습니다. 10
-
아낌없이주는나무는이제없다..
-
전시즌 플레계정인데 랜만에 켜서 한판해서 첫판 이겼더니 실버 4를 주네
-
벌써 2028 수능 준비하는 사람 있음? 아는 08 지금 자퇴하고 2028 수능 준비하는데
-
이번 겨울부터 시대 라이브반 수강하려고하는데 언제쯤 개강하나요??
-
나도 그때까진 생지가 무슨 이과냐고 생각하면서 이과가 물화중 하나도 안 하는게...
-
방금 라면먹고 3
식은 밥말아먹는 중인데 살안찌겠죠? 오늘 아침안먹었고 점심 저녁만먹음 점심엔 떡볶이...
-
행렬 공간벡터 모비율의 추정 롤백시킨건 근본스러운데 1
행렬은 공통수학1에 있어서 간접 연계로 들어가는데 수학적 귀류법이나 순열처럼...
-
언 미 영 물1 지1 동대나 홍익대 공대는 가능할까요...?
-
지각안할라면넉넉히 6시50엔 일어나야하는데 ㅅㅂ오늘 ㅈㄴ쳐잣더니 잠안옴..ㅈ댬
-
기숙학원재수는 1년6개월동안 공부해야하고 기간동안 수능을 볼 수 없으며...
-
위치 신경안쓰고 학교 지원이나 아웃풋 측면에서만 ㅇㅇ 입시 커뮤 말고는 어떤 기준으로 알아봐야됨?
-
ㅏ 드디어 1
올 한해를 알차게 보내기 위한 인강 커리 N제들 계획을 다 세웠다 이대로만...
-
세종대 논술 0
보통 수학 몇등급대가 오나여? 미적 안한 기하러 합격 가능세계잇음?
-
07들에게 힘의 차이를 보여주기 위해
-
.
-
이새끼들 안죽냐 변기물로 익사시킴
-
긴장되네요.. 0
인생이 바뀌는 시험이라 그런지
-
올인원, 단어, 유형독해만 듣고 빈순삽은 교재없이 강의만 들어도 되나요? 목표는 2등급 이상입니다.
-
ㅈㄱㄴ 실모에요 N제에요?
-
이번에 보니까 호텔관광이랑 묶어서 계열로 뽑던데 2학기끝나고 전공 선택할때...
-
음..
-
의치한은 진짜 그런가요
-
계정은 남겨 두겠음
-
우울글 3
(반말주의) 사실 나는 의대가 너무 가고싶었다. 아니, 의사가 되고 싶었다는 말이...
-
은 없나여?
-
예비 고3인데 이 시점에 수 상하 복습해도 괨찮을까요… 4
초딩 때 수 상하 배우고 성적 개판 치다가 올해 시대 스파르타 다니면서...
-
고2까지 공부 던지고 펑@펑 놀기 고3때 공부 시작해서 재종 들어갈 성적 띄우기...
-
그냥 접겠다..
-
공통수학 (22개정) 공부 통합사회 (22개정) 공부 독서 심슨 정주행
-
자라. 4
3시 전에 자야지
-
이건 팩트인듯요
-
가천대 명지대 경기대중 셋다 붙을수있다고 가정하에 어디가 가장 괜찮을까요??
-
차 많이 막히려나 가기 존나 귀찮네 ㅅㅂ
-
인생이힘들다..... 나데나데나데나데나데나데해줄미소녀한테 어리광 부리고 싶다
-
얼버기 4
9시에 잠들었는데 지금 일남 ㅅㅂ 4시엔 다시 자야지
-
이훈식 오지훈
헐 이게뭐야... 벌써해설써두셨네ㅔ
와 30번저런식생각하면 되는구나..역시제이코사인법칙 짱짱!
헐 다솔님 작년에 님이랑 카톡스터디했었던것같은데 ..ㅠㅠ 아직수험생이세요??
저는 카톡스터디에 참여한 적이 없어요... ^^;;
다른 분이랑 헷갈리신 거 같아요.
ㅋㅋ그렇네요 작년에도 이글씨체해설본적있고 다솔이라는분이랑 스터디한적있어서 기억이겹친듯~~
우와 글씨체.. 예쁘실거 같다
12번 차수높은거끼리가 무슨의미에요?
차수가 큰것부터 겹쳐야 2가 가장 많이 나오게 됩니다.
차수라는게 1이 많다는걸 의미하는거죠?
혹시 문과라 이해못하는건가요?ㅋㅋ
아.. 차수가 연결된 변의 개수를 뜻하는데 용어가 교과외긴 하네요ㅜㅡㅜ 그렇게 이해하시면 됩니당
B가 한줄로 이어지니까 A에서 각 꼭지점끼리 한줄로 이을 때 가장 많으 겹치는 것 생각하면 더 빨리 풀 수 있어요
어라 오르비는 안하시는줄 알았는데
글씨 항상 보면 정말 잘쓰시네요
17번 무한등비문제 이해가 안갑니다. 왜 1/2 x 라고 해노셨는지.. A형 해설도 부탁드려요 ㅠㅠ
삼각형 ODE를 통해서 높이:밑변=1:2를 파악하고나면 닮음이므로 x/2와 x라고 놓을 수 있습니다. A형 해설은 며칠 안에 업로드하겠습니다ㅜㅜ
a형은 없나요??
감사합니다ㅎㅎ
해설 감사합니다~!
귀납법문제 어케푸는건가요ㅜㅜㅜ 암만봐도.....
f(k) = 1/2 + 2(2+4+6+…+2(k-1)) 입니다.
와 20분만에 이해했어요 감사합니다ㅋㅋ
질문드립니다.
11번에..절댓값인데 구간 나눠야하지 않나요?? 위에 풀이는 양수일때고,
ln안에값이 음수일때는 부호붙여서 해야하지 않나요..?? 별 쇼를 다하다가 저기서 말아먹었네요 ㅜㅜ
왜 그냥 저렇게해도 되는지 설명즘 해주시겠어요..?? 30번하고 저거 못풀었네요 ㅜㅜ
ln|fx| lnfx 둘다 미분값은 동일해요구간 안나눠도됩니다 ㅎㅎ
미분값은 동일 하게 나오는데,,뭔가 다를꺼같아서..;;아 머리가 혼란스럽네요..;;뭔가 바뀔꺼같은데..ㅜ
11번에 ln안에 함수는 0이되면 안되는거 아닌가요?
네 lna안의함수는 0이되면안되지만 미분했을때 안의함수가 0이되는 a=4일때 x=2인값은 무연근이되고 이걸구한 미분방정식에서 a=4대입하고 해를찾아보면 x=4가나오는데 이는 ln안의함수에 a=4와 대입했을때도 문제가 되지않아요
아! 이해했습니다 감사합니다
글 안지우실꺼죠? 주말에 다시 풀어보려구요 ㅠㅠ
헐... 30번 ㅡㅡ P는 무조건 두번째로 만나는점이어야되는줄 알고... 미친듯이 고민했네요...;; 두번째로 만나는 점일땐 접선으로 붙는경우가 최소일까요? 증명을 못하겠어서...
" 접선으로 붙는경우"가 무슨 말인지 이해가 가지 않아요
음 그니까 하나가 위의 원 중심에서 그은 접선이 된단 소리죠
17번에 1/2 x + x = 2(root2-x)는 어떻게 나온건가요
정사각형의 한 변의 길이가 x/2 + x입니다. 이건 위에 덧글에서 닮음비로 설명드렸구요.
선분 OD의 길이 sqrt2에서 x를 빼면 정사각형 한 변의 길이의 절반입니다.
아아아~ 45도인 부분을 찾았네요 감사합니다.
다솔찡님 질문좀 드릴게요
16번에서요
(나)구할 떄
(가)- 2n제곱 한것의 식 에다가 n 대신에 n/2 대입한것이잖아요
저도 그렇게 풀긴 했는데
n대신에 n/2 대입하는것이
모든 수열에서 쓸 수 있는 풀이법인가요? 긴가민가 해서요
당연히 아닙니다. 홀짝으로 규칙이 나뉠 수 있습니다.
문제 구조상 a_n이 홀짝으로 나뉘지 않기 때문에 그냥 대충대충 풀었지만..
실제로 a_(2k-1)을 구해서 2k-1대신에 n을 넣어보시면 결과가 같다는 걸 알 수 있습니다.
다솔찡님
그런데요 12번 문제에서 차수높은 것끼리 더한다! 라는 발상은 어떻게 나온것이죠? 그 발상에 대한 확신 말이죠..
A+B행렬의 성분은 0, 1, 2중 하나입니다.
2는 A, B행렬 각각의 성분이 모두 1일 때 등장할 거구요.
따라서 A, B의 인접행렬의 성분이 위치상 최대한 1끼리 많이 겹치게 하면 됩니다. 그게 그래프 상에선 차수 높은 것끼리 겹치는 게 되구요.
글씨체가 익숙해서 그런데요 ㅋㅋㅋ
혹시 오르새썜 아세요??
90.. 아 실수..
30번에서 PQ의 길이가 최소가 되는 점이 왜 y축대칭일때예요??
P와 Q모두 동점아닌가요??
이유에 대해서는 지면상 자세히 서술하지 않았지만..
각이 정해진 상태에서 점 P와 Q가 결정이 되는 것입니다.
y축 대칭이 아니면 뒤틀리면서 길이가 늘어납니다 살짝 직관.
30번 최댓값을 상수라고 고정해야하는거에요?? 최댓값 최솟값 둘다 각에 대한 변수아닌가요?
최댓값은 항상 지름이 됩니다.
무한등비급수문제 30분 고민하고 해설봤는데..
공비를 어떻게 저렇게 논리적으로 생각하나요..
하 진짜 등비급수문제 문제 나올때마다 쉬운거아니면 못푸네요..
이거 맞출려고 등비급수 문제 뿐만 아니라 도형 문제 진짜 많이 풀어봤는데도
안되네요.. 어떡하나요 진짜
조잡하게라도 풀어내면 됩니다. 해설에 나온 방법말고도 엄청 많아요.
최대한 도형 성질 이용하고 도저히 안되는 것은 좌표를 잡으세요
다솔님 30번 문제에서요~~ 점B와 점C는 딱 y축 대칭 된점이 아닌거 아닌가요??ㅠㅠ
점B와 점C를 이은 선분이 y축과 만나는 점으로 딱 이등분 안되서 BC의길이=2sin세타/2 라고 나타낸건 모순이 있는거 아닌가요?? 어떻게 2sin세타/2 가 나오는지 좀 알려주세요ㅜㅜ
코사인 법칙을 써봐도 루트(2-2cos세타) 가 나오거등요 ㅜㅜ
y축대칭이 아니어도 결과가 같습니다. 원의 중심과 현은 항상 이등변삼각형을 만들어요.
코사인법칙 쓴 결과를 반각공식을 이용해 정리하면 역시 같은 결과를 얻습니다.
한가지더여쭤봐도될까요?? 30번에서 점P 가 왜 점Q의 y축 대칭이여야 할때 PQ 길이가 최솟값을 가지는건가요?? P가 (0,1)로 점점 더 가까워지면 PQ의 길이는 더 작아지는것 아닌가요?? 세타가 유동적이니깐요!
하나의 특정한 각마다 P, Q라는 동점이 생기구요, 이때마다 최솟값이 결정되는 함수관계를 나타낸게 g라는 함수입니다. 이 말을 이해해야 저 문제도 이해가 됩니다ㅜㅜ
2o번에 중복조합인지 순열인지 햇갈리는데 어떻게 구분하죠
5가지중에 세가지를 중복을허락해서 뽑는거니깐 중복조합이죠.
곱은 순서를 따지지 않습니다!
20번 -5해주는거 직접찾아야되나요?? 중복되는거
생각해보면 저위에언급한 다섯가지경우밖에없어요
20번에서 곱의 형태를 물어보고 있습니다 그런데 중복이 된다는 것은 n제곱 형태가 있다는 것이고 이러한 관계가 성립하려면 2, 4밖에 없다는 것을 알 수 있습니다. 3, 5는 선택한 갯수만큼 n승이 생기잖아요. 뭐라 설명하기 힘드네요
솔직히 30번 문제는 이해하는데 시간이 많이 걸리는 것 같네요. 실제 문제풀 대 상당히 당황..(이해가 잘 안되서)
11번에서 미분할떄 왜 절댓값이 벗겨지는건가요??
그리고 2번째경우가 이해가 안가요... 분모가 0이면 안되는거 아닌가요
위에 댓글보시면 아시겠지만 ln|fx| 와 lnfx는 미분값이같아요~ 그리고방정식의 근이2개일때, 님말대로 분모=0 근이생기는 무연근 하나를 제외하니 한개의 근을 갖게되서 조건만족해서 됩니다
헐 사진이 없어졌어요ㅠㅠㅠㅠㅠ
아 나타났네요
11번은 미분때릴때 절댓값은 신경안써도되는건가요??
lnf(x)와 lnlf(x)l는 미분했을 때의 결과가 같습니다.
아 중복질문인거 이제알았네여ㅜ중복질문임에도 친절하시네요 감사합다
26번에 그림그려보고 점근선의 기울기의 절댓값이 0이상 1/2 이하라고 생각했는데 왜 안되는거죠 ㅜㅜ
그리고 30번문제가 무엇이 기준이고 어떻게 움직이는지 이해가 안되네요 ㅜ
26번은 0 이상 1/2 미만일 때 교점이 0개구요.
30번은 반드시 각이 기준이 됩니다. 각을 먼저 0으로 보내고 생각하면 곤란해져요.
30번 왜 AP를 X로 놓으신거죠?.. F세타는 PQ인데;
AP에 삼각비값만 적당히 곱해주면 PQ가 되니까요.
아하.. 그래서 밑에 계산에서 -1이 붙은거구나.. 30번 어렵고 괜찮네요..
근데 문제 설명이 평가원만큼 깔끔하지가 않아서 바로 문제가 요구하는게 먼지 이해하기가 어렵네요
감사합니다
30번에서 최댓값은 상수인데 최솟값은 변수가 뭐죠..??ㅜㅜ 그리고 최솟값이 대칭되야하는건 알겠는데 왜 AP를 x로했나요? PQ를 구해야되잖아요
나름 의대 노리는 사람인데 51점 맞았다 ㅎㅎ 뭐지
a형 목요일에 올린다고 하셨는데 왜 안올라왔나요?
저도 기다리고 있어요!!!
죄송합니다ㅜㅜ 갑자기 너무 바빠져서..
모평전에 꼭 업로드해서 공부하는데 도움 될 수 있도록 할게요.
와 11번에 지리고 갑니다.
ㅡ 120분 풀고 90점도 못맞은 찌끄래기
저 죄송한데 등비급수에서 1/2x 이게 어떻게 나오는지요...?? A형인데 풀다가 못풀어서 해설찾다가 왔어요