2014 7월 모의고사 수학B 30번 한완수를 이용한 풀이
게시글 주소: https://h.orbi.kr/0004689030
2014 7모 수학B 30번 풀이.hwp
2014 7모 수학B 30번 풀이.pdf
한글 파일, pdf 파일 모두 준비해놨으니 필요하신 분들은 가져다 쓰세용 ^^
과외 학생에게 쓸 자료인데, 여기다가도 한번 뿌려봅니다 ㅎㅎ
잘 보셨다면, 좋아요 눌러주시면 정~~말로 감사하겠습니다. 보다 많은 사람이 봐야하니까요 ^^
p.s 들리는 썰에 따르면 평행한 면을 바로 찾거나, 법선벡터를 이용해서 풀어낸 경우도 봤습니다.
이런 경우의 풀이도 한번 생각해보시기 바랍니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
보기만 해도 눈아픈데 어떻게 하는 걸까..
-
into the sun 리버틴즈 노래입니다.
-
진짜 맛있네 내가 먹은 딸기라떼중에서 제일 맛있음
-
누구는 완자랑 수특 기본문재 돌리고 1등하고 누구는 마더텅 수특 수완 싹다 박박...
-
가해자는 “전교 1등 학생이 인사를 안 받아줘서, 앞으로는 서로 인사 잘 하자는...
-
내신 독서,영어,중국어,정법,화1 유기하고 수2,기하만 공부하고 싶구나
-
살 찌겠네 ......,,,,,
-
하제발요ㅠㅠㅠㅠㅠㅠㅠ ㅠ ㅠ ㅠ ㅠ ㅠ ㅠ ㅠ뮤뮤뮤뮤뮤ㅠㅁㅁ
-
놀이공원은 같이 갈 사람이 없고 영화는 볼 영화가 없어서 못 써먹고 있음..
-
의치한 서울대? 1
둘다 못가는데 알바노
-
가슴이 시키는 대로 해라. 끝
-
히히 9
1월 홋카이도 여행 숙소 예약 중인데 기대된다
-
수2, 미적은 미들까지 했는데 수1은 미들부터 너무 빡센데.. 다른거 풀까요 ?
-
생각해보면 휴일은 항상 이랬던 거 같기도 하고
-
에휴
-
2024년 11월 2주차 韓日美全 음악 차트 TOP10 (+11월 1주차 주간VOCAL Character 랭킹) 2
2024년 11월 1주차 차트: https://orbi.kr/00070032058...
-
어느정도 반영되는지는 아직 아무도 모르는것임뇨?
-
소설말고 상식을 좀 기르고 싶어요. 정의란 무엇인가. 총균쇠 이런 류의 책 추천해주세요
-
메가스터디 환급 조건에 보면 단, 허위 답안(한 줄 세우기, 반복 번호 등)을...
-
세종대 수리논술 0
허수 많나요?
-
낼 중논 갈지말지 고민 돼서용
-
데굴데굴 구르면서 들어갈텐데
-
숙대약대 논술본거 잘한거겠지 서울대 안될거같아서 약대논술 쓴거 다감
-
이게맞나... 원래도 이정도 쉬면 이렇게 되긴 했음ㅠ 남들은 안그러시나요.. 지금...
-
밐 일러 6
밐밐
-
일반고 예비고3입니다 이번 학기부터 내신보다 정시에 중점을 두고 공부하고 있어서...
-
우리 누나가 이대 다녀서 ㅈㄴ이해가면서도..
-
이분 생각났음 ㅅㅂ
-
1등급 뜨겠지 하 ㅅㅂ...
-
? 확통을 버릴 필요가 없는거 같은데
-
커리가 안 올라오는 거 보면 올 해 물리1,통과만 하시려나 싶은데요. 교재주문이나...
-
기하 풀어야된다고;;
-
군대와서 놀란 거 11
웃음체조가 진짜 있다
-
제곧내ㅇㅇ 화작 89점 미적72점 정법사문 둘다 44점? 인데 찍은거 제외임 아니...
-
돈이 마니나감 한달에 고정 -60 ??
-
그런 느낌이 듦뇨
-
3등급 초반인가요?
-
4순데 생2 지1 어떤가요 생2가 노벱니다 물1 고여서 버립니다 의대 목표구요...
-
작년보단 어렵지 않았음? 작년보단 틀릴만한거 있었던 거 같은데
-
경북대 신소재 aat 10
150/350이면 합격 ㄱㄴ?
-
D-355 공부 1
-
걍 반수할까 7
서성한은 적당히 쓰면 될것같긴한데 쌩재수가 갖는 이점이 있을까요 반수에 비해서.....
-
기하랑 확통때문에 진짜 미취겟다 밤 새야지
-
국어 4 데미지가 너무 큼 3만 떴어도 그나마 나을텐데
-
이새끼 진짜 3
https://youtube.com/shorts/Gx0SYhfeiVg?si=Yb8cQ...
-
요즘은 특히 진짜
-
이러면 또 학력저하라고 틀딱들이 비웃겠지
-
05년생 여자이고 현역 때 정시로 연고대 이상 생각했지만 수능 때 국어에서 크게...
-
와 현우진t vs 윤도영t 인스타 댓글서 시비붙음 ㅋㅋ 7
이정도면 붙나요?
-
수능을 계속 보기로 마음먹음
이 문제를 정사영해서 이면각구하셨다는 말씀인가요 ??
저는 어차피 이면각을 구하는 거니까 원기둥에 생긴 면을
정육면체로 끌고 내려와서 매치시키니까 정사면체 이면각과 똑같길래 정말
1분컷으로 풀었었는데;;
그렇게 푸는 것이 가장 빠르다는 것은 인정합니다. 제 풀이법은 일종의 대체재 성격을 띄는 풀이입니다. 시험장에서 평행한 면을 보지 못했을 때를 대비한 풀이라고나 할까요 ㅎㅎㅎ 만약 시험장에서 교육청의 풀이법이 안보였다면 어떻게 하면 좋을까라는 발상에서 만든겁니다.
아... 공간도형 문제는 풀이법이 다양하니 님의 풀이도 공부해봄이 좋을듯싶네요 감사합니다ㅋㅋ^&^
단면화 과정이 전혀 이해안되네요 저렇게 단면화 된다는 보장이 있나요? 코멘트없이 쓸 정도로 전혀 자명해보이지는 않네요
평면을 하나의 직선으로 보는 것의 단면화의 핵심입니다. 세개의 평면 중 어느 하나라도 평행한 평면이 없고 공통 교점을 가지는 평면이 없다는 것은 그림으로보면 너무 자명한 사실이구요 그래서 저렇게 삼각형 모양으로 단면화해도 문제없습니다
아무튼 좋은 의견 감사드립니다 ^^
저두 ㅎㅎ 그냥 길이 적어보니까 맞는거같아서
좌표풀이 만사형통
법선벡터의 각!
닥 외적
외적 몰라요ㅠㅠ
님처럼 수학 잘하면 수학 엄청 재밌을 듯 ㅜ
문과라서 무승 말인 지 하나도 모르지만
좋아요 누르고 가요!ㅋㅋㅋ
이분참 재미지단말이야 ㅎ
이렇게 단면화 시키려면 먼저 세 평면이 공통교점을 가지지 않는다는 것과 한 평면에서의 법선벡터가 나머지 두 평면의 교선에 수직한다는 점을 먼저 증명시켜야 단면화논리가 성립함.(작년수능 29번문제하고 같은 논리) 이거 먼저 언급하고 적용하시면 완전한풀이가 될 듯
좋은 의견 감사합니다 ^^
위위위에 댓글에 이미 단면화 논리 알고 계셨군요 ㅎㅎ
일단 댓글 써놓고 단면화 되는지 확인해 보니까 이분말대로 공통교점있고 법선벡터가 나머지평면 교선에 수직하지도 않네요 이거 단면화 논리 오류인듯
공통교점은 점 D라고 나오는걸 봐서는......
시간이 많이 남아거 영혼없이 평방 구했네요 ㅋㅋ
단면화를 하려면 두 면의 교선이 점으로 보이는 시점에서 두 면을 직선처럼 보는건데
저 그림대로라면
면 DEG와 밑면과의 교선,
면 PQR과 밑면과의 교선,
면 DEG과 면 PQR의 교선
이 세개의 교선이 평행해서 한점으로 보이는 시점이 있다는 건데 실제로는 교선들이 평행하지 않으니 문제풀이에 오류가 있다고 생각합니다.
걍좌표로풀고 외적써ㄷ
넘 오래걸려요 ㅠㅠ
외적 굳ㅋ 2분컷
정말 문과와 이과는 종이 1억장 차이다
그럼 이 문제를 단면화로 푸는건 논리적 비약이 있다는건가요?? 어떻게 답은 맞는건지요?
저는 정사영을 2번하는 방식으로 풀었는데 어떻게 생각하시나요?
그냥 넓이에다가 코사인세타1과 코사인세타2를 곱해서 1/3값을 곱했는데 답은 맞았거든요
저 교육청풀이가 cp를 이용하여 푼거아닌가요
저도 저렇게풀엇는데..
제가 머리가 나빠서 논리적으로 맞지않다고 생각하는건진 모르겠는데, 답만 옳게나오는 짜맞추기풀이아닌가요?
저거 단면화과정 없어도 괜찮지않나요? 어째선지 저방식하고 비슷하게 그냥 cos세타1 cos세타2 구해서 두개 덧셈공식해서 구했었는데...
그냥 잘못 푼 거 같기도 해요. ㅠㅠ
코사인세타1오타잇으세요 DI/IH ---> IH/DI
네 확인했어요 ㅠㅠ 죄송합니다