칼럼) 수능 역사상 가장 어려운 문제인 171130, 현실적으로는 어떻게 풀까?
게시글 주소: https://h.orbi.kr/00056741669
벌써 먼 옛날 얘기이긴 하지만 준킬러의 시대가 들어닥친 요즘 수능 수학이랑은 다르게
4-5년 전의 수능 수학은 킬러문제, 즉 21 29 30번 세 문제만으로 상위권을 변별했습니다.
특히 그렇기에 이 세문제의 난이도가 매우 높았고 30번이 극악이었죠.
그렇기에 수능 역사상 난이도가 가장 높은 문제를 논한다면 수학 가형 171130, 181130 은 빠지지 않고 탑 3안에 들어갑니다.
여기서는 171130에 대해서 얘기를 해보도록 하겠습니다.
이 문제는 사실 여러분들이 기출을 공부하면서 많이 접해보았을 겁니다.
문제자체가 너무 많이 꼬여있어서 야매로 답을 도출해내는게 이득인 181130이랑은 다르게
문항 자체의 퀄리티도 매우 높기 때문이죠.
우리는 이 문제를 풀 때에 주로 기울기 함수를 사용한다고 들었을 것입니다.
하지만 기울기 함수가 익숙한 요즘이랑은 다르게 저 시절엔 기울기 함수라는 개념이 매우 생소했기에
이 문제의 정답률을 매우 낮았죠.
그래서 저때엔 현장에서 기울기 함수를 떠올리기가 매우 힘들기에
기울기 함수를 모른다면 어떻게 풀어야 할까를 고민해 본 결과 기울기 함수를 사용하지 않은 풀이법을 개발했습니다.
우선 이런식으로 f(x)를 분수함수로 나타내어 보도록 하죠. 이젠 이 친구를 미분해 줍시다.
이렇게 되네요. 여기서 이 f'(x)를 관찰해 보도록 하죠. 분모는 항상 0보다 크기 때문에 분자만 잘 관찰한다면
f(x)의 증감을 파악할 수 있을 거라고 생각해 볼 수 있습니다.
그런데 분모는 4차함수네요. 분자의 4차함수를 잘 분석하면 될 것이겠군요. 일단 분자의 4차함수를 분석하기에
지금은 너무 정보가 부족하기에 일단 이정도까지만 파악하고 g(x)에 대한 정보를 도출해 보도록 하죠.
(나)의 조건에 따라서
이라는 관계식이 도출될 것이고 이를 앞서 구했던 f(x)와 f'(x)에 대입한다면
이것과
이것이 나오네요. 얘네들을 연립만 잘 해준다면
이 됩니다. 자세한 계산과정은 생략하도록 하겠습니다.
그리고 이 관계식을 다시 에다가 대입을
한 다음 정리해 보도록 하겠습니다. 그러면 아래와 같은 식이 나옵니다.
이렇게 될 것입니다. 이 식을 잘 관찰해본다면 매우 흥미로운 사실이 얻어지게 됩니다.
(alpha, g(alpha))와 (beta, g(beta))는 모두 직선 y=M(x-a)를 지나게 된다는 것입니다.
또한 이 점들에서의 g(x)의 기울기가 M이기 때문에 이 직선이 결국 이 두 점의 접선이 될 것입니다.
이젠 이것을 그림으로 알기 쉽게 표현해 보도록 하죠.
그림이 약간 이상하긴 하다만 다음과 같이 사차함수와 직선이 접합니다.
그러므로 이를 식으로 표현하자면 아래와 같이 됩니다.
지금까지 앞서 말했듯이 g(x)에 대한 정보를 도출해 내었습니다.
정보를 도출해 내었기 때문에
이제는 f'(x)의 분자인 사차함수를 분석해서 f(x)의 증감을 판별해 볼 차례네요.
이 g(x)를 f'(x)에다가 통째로 대입하고 정리해보도록 하죠.
도출 과정을 위한 계산은 매우 귀찮으니 생략할 것입니다.
이렇게 정리가 되네요. f'(x)=0에서 alpha와 beta가 극값인건 자명하고 이젠 다음으로
의 근을 구해보도록 하죠. 이것의 근은 매우 복잡하기에 그래프로써 관계를 봅시다.
이런 식으로 두 근중 하나는 x<a에 다른 하나는 alpha와 beta사이에 존재한다는 것을 알 수 있네요.
하지만 앞서 정의했듯이 이 함수는 x>a 일 때만을 다루므로 f(x)의 극값은 alpha, beta, alpha와 beta의 사이에 있는 값 이렇게 총 3개가 됩니다.
g(x)의 극값은 f(x)보다 작아야 하지만 사차함수의 극값은 항상 3개 혹은 1개만 가능하니 g(x)의 극값은
한 개가 되겠군요.
이제는 모든 과정이 끝났습니다.
여기에서 g'(x)=0의 근이 1개 혹은 2개일 조건을 찾으시면 M>=216이 나올 것입니다.
이것에 대한 계산은 이미 많은 기출문제집 등등에서 다루므로 생략합니다.
이렇게 쓰고 보니까 171130은 정말 까다로운 문제같네요.
공대오지마라 의치한가라라는 말을 마지막으로 떠납니다.
0 XDK (+1,000)
-
1,000
-
치대에선 공부시킬게 너무 없어서 깜지쓰기 시킴
-
이 분 뭐임?? 다 맞추셨네 ㅋㅋㅋ
-
초콜릿 크림이 올려져 있는 폭신폭신한 빵이네요. 하지만, 아침 식사로 한낱 초콜릿...
-
춥다 0
아침마다 나오기가 너무 싫어
-
미적 기하 선택 2
예비 고3이고 미적할지 기하할지 고민중입니다 재수는 죽어도 하기 싫어서 1년안에...
-
앗차차 그거슨 의대생이 아니라 여대생이었구요
-
정신병 있으면 군대도 안가 처벌도 안받아 딱히 불이익도 없어 이쯤되면 정신병...
-
기상입니다 여러분
-
오르비의 정상화
-
칼기상 13
베개 없어서 수건 말아서 베고잠
-
어제부터 매일 7시간 이상 공부하려고 한다 큰 이유는 없고 그렇게 마음을 먹었기...
-
여캐일러 투척 12
4일차
-
모닝일러투척 9
음역시귀엽군
-
어제 2시에자ㅏ서 진짜 즉을거가ㅏ네
-
아침 8시에 자서 오후 5시에 일어나는 삶을 사는중.. 7
그런 의미에서 자러감 좋은밤되세요
-
얼벅이 2
ㅎㅇ
-
사탐런 골라주샘 5
07 이번 결방학때 수학 현우진 ㅈㄴㅈㄴ달릴거고 미적은 노베임 국어 2 영어1...
-
뭐부터보지 2
3D는. 처음이라 잘 몰라
-
기차지나간당 2
As a general rule, historians find it...
-
안녕하세요 12
잘 주무셨나요
-
요즘 불안해서 잠을 안 자려고 하다보니까 오후12시 이렇게 자고 그랬는데 오늘은...
-
이원준t 수업 어떻게 들어야 하냐고 물어보네요... 몇개월 전에 내 모습이 겹쳐보였어
-
잔다르크 0
-
이거 재밌음? 드라마 잘 안 보긴 함
-
언제적 드라마지 1
프로듀사<<<<<이거보고 PD꿈생기긴함
-
논산 훈련소를 향해 10
-
지금 독서실로 등교 오늘 학교 9시까지 등교라 좀 버티고 가야겠음
-
얼버기 5
-
이 녀석이 초대형 거인이야
-
ㅈㄱㄴ 3학년 2학기때 개조짐 육군 기행병 간다는 생각으로 해야할듯
-
서늘한 감각 3
-
과 상관없습니다
-
얼버기 0
-
삼차함수 세실근합 일차함수 빼도 똑같은 건 ok 근데 문제 풀다보면 상수를 빼도...
-
어쩌면 가야만 하겠다는 생각이 든다 못가면 진짜 정신병 제대로 걸릴듯 못가면 죽을...
-
1~2개 틀린 사람도 많은듯.. 먼가 곳곳에 다 숨어있는듯…. 좀 불안
-
지금 컴공도 레드오션인데 전자가 유망한게 반도체 때문이었는데 반도체 시장도 같이...
-
20살 20.5살 21살 21.5살
-
현 본인 06 / 12월입대, 헌급방4점가산점채움.일반병 8달동안 공부쉼....
-
ㅈ댄건가여
-
국어-역대급 노베입니다 진짜 국어를 너무 못해서 전역 전까지 기초 쌓을만한 방법 및...
-
어떤 일 때문에 여름부터 지금까지 힘들어하는건 에반가 0
그냥 잘살다가 갑자기 눈물쏟고그럼... 이제 이겨내야할거같은데 안댐..
-
사탐약대 3
사탐으로 되는 약대 있나요? 사1과1은 대부분 안되던데
-
현역 때 수시로 지방 사범대 평균 등급 5 학교 네임벨류만 보고 간다는 마인드로...
-
6일 당일에 온라인으로 뽑을 수 있나여??
-
좋은아침 0
사실 알바끝나고 집옴.
-
07년생이고 고1때 자퇴하고 수능 일찍봐서 주변에 예비고3 친구들이 많아서 연락이...
-
미적 단과 엄소연t 하나 다닐 건데 과제 종류랑 문제수 아시는 분 있음? 1-2월에...
-
화1생1입니다 41/47맞고 4/1 떴어요 화생 말고는 전부 쌩 노배에요 26수능...
칼럼추
오
공대갈꺼면 대학원도 생각하라
칼럼조이고
그러니까 칼럼을 읽고 고득점을 해서 꼭 의치한 입성하라는 뜻이시죠?? 감사합니다!!
진짜 PTSD오진다..
정병훈은 천재고
216은 신이다
나 궁금한데 이거 수2아니고 미적이야?
아 분수함수의 미적분을 썼으니까 미적이네요
수2는 분수함수를 못다루니 미적분이죠
기울기함수 풀이가 존재해서 수2로 나와도 됩니다.
수2로도 풀 순 있어용
우왕 ㅅㅂ 나는 수능 포기해야 하나 하..
ㅇㅇ
공대가라
이 칼럼을 보고 신호 및 시스템 과목과 디지'탈'신호처리의 기초 과목에서 S+을 쟁취하였습니다. 감사합니다.
문재인으로 봤으면 개추
진짜 저 문제는 기울기 발상을 못 떠올리면 손도 못 대는 것 같아요ㅠ
극대극소의 정의를 활용한 부등식 풀이로도 같은결과가 도출되더라고요.
저거1년뒤 181130 문제도 진짜 조호오오온나 어렵지않나요..
이거 호훈이 이렇게 풀었던거같은데
유튜브에 이 문제 풀이 올라와있는데
수학문제 해설 보고 감탄한거 그게 유일했음 ㅋㅋ
확통이 답이다!
동기 17수능 수학 다 맞았던데ㅋㅋㅋ
진짜 현실
아니 삼차함수가 어떻게 극대점이 2개냐고
아 ㅋㅋㅋ
17수능 -x^4+ax^3+bx^2+cx+d잡고 개형 파악했는데 계산 꼬여서 108나오고 틀림
아 저 문제 너무 어려워서 끄적이지도 못하고 넘겼어요…
이문제 수분감에 있나유?
당근
안풀고 넘겼던 기억이
개인적으로이건 쉬웠고 181130이 진짜 어려워서 풀면서도 짜릿해했던 기억이 남네요
이사람 멀쩡한글 쓴 거 처음봤네