라이프니츠의 위엄 #다이어그램
게시글 주소: https://h.orbi.kr/00057535903
0. 라이프니츠의 위엄
유튜브에서 '이게 바로 라이프니츠의 위엄이죠' 영상을 봤습니다.
저도 떠오르는 게 있어서 주저리주저리 라이프니츠 썰을 풀어봅니다.
1. 정언문장
모든 S는 P이다
어떤 S도 P가 아니다(=모든 S는 P가 아니다)
어떤 S는 P이다
어떤 S는 P가 아니다
위와 같은 문장을 논리학에서는 정언문장(categorical proposition)이라고 합니다. 쉽게 말해, 두 카테고리 간의 관계를 나타내는 문장이라고 생각하면 됩니다. 수학 집합과 명제 시간에 배워서 다들 익숙할 겁니다.
2. 라이프니츠 다이어그램
라이프니츠는 정언문장을 다음과 같이 선형 diagram으로 나타냈습니다. 따로 설명이 필요하지 않을 만큼 직관적입니다.
예를 들어, “모든 S는 M이다.”, “모든 M은 P이다.”는 아래 그림처럼 표현됩니다. 이때 결론 “모든 S는 P이다.”가 타당하게 도출됨을 직관적으로 파악할 수 있죠.
3. 오일러 다이어그램
오일러는 원으로 정언문장을 나타냅니다.
예를 들어, “모든 S는 M이다.”, “모든 M은 P이다.”는 다음 그림처럼 표현됩니다. 이때 결론 “모든 S는 P이다.”가 타당하게 도출됨을 직관적으로 파악할 수 있죠.
4. 벤 다이어그램
벤은 오일러 다이어그램을 개량합니다. 아무것도 없는 부분에는 빗금을, 대상이 존재하는 곳에는 x를 표시하는 방식입니다.
예를 들어, “모든 S는 M이다.”, “모든 M은 P이다.”는 다음 그림처럼 표현됩니다. 이때 결론 “모든 S는 P이다.”가 타당하게 도출됨을 직관적으로 파악할 수 있죠.
5. 루이스 캐럴의 다이어그램
벤 다이어그램은 집합이 넷인 경우에는 원으로 나타낼 수가 없습니다.
위와 같이 그리면 ‘A와 D만 있는 영역’과 ‘B와 C만 있는 영역’을 나타낼 수 없습니다.
참고로 벤이 제시한 집합이 4개일 때의 다이어그램은 아래와 같습니다.
이거 말고 아래처럼 꿀렁꿀렁한 버전도 제시하긴 했습니다.
_이미지 출처: Venn, J. (1880). On the Diagrammatic and Mechanical Representation of Propositions and Reasonings. London, Edinburgh, and Dublin philosophical magazine and journal of science. R. Taylor.
이외에도 벤은 집합이 다섯, 여섯인 경우까지도 어떻게든(혹은 억지로) 그림을 그려내긴 했는데, 일곱 개부터는 따로 언급이 없습니다. 실제로 컴퓨터 없이 그려내기가 몹시 어렵고, 추상화 같은 벤 다이어그램이라서 실용적으로 활용하기도 어렵습니다.
이런 문제점을 해결하기 위해 루이스 캐럴은 아래와 같이 사각형으로 나타내는 방법을 고안합니다.
(참고로 여기서 루이스 캐럴은 『이상한 나라의 앨리스』, 『거울 나라의 앨리스』 저자이기도 합니다. 작가이기 전에 수학자이기도 했으며, 『Symbolic Logic』을 쓰기도 했어요.)
사각형의 위쪽은 X, 아래쪽은 ~X, 왼쪽은 Y, 오른쪽은 ~Y를 할당하는 거죠. 그러면 아래와 같이 영역이 나뉩니다. (∧는 and, ~은 not을 뜻함.)
셋일 때는? 안쪽에 사각형을 하나 더 만들어서, 사각형 안에 있으면 Z, 밖에 있으면 ~Z를 할당합니다.
예를 들어, 질병관리청에서 제시한 <중독 분류도>는 캐럴의 사각형을 활용했습니다.
_출처: https://www.kdca.go.kr/contents.es?mid=a20308060100
이런 식으로 나타내면 카테고리가 더 많은 경우도 다음과 같이 체계적으로 나타낼 수 있습니다.
_그림출처: Carroll, Lewis (1896). Symbolic Logic. Macmillan.
6. 파그난의 SYLL
2012년에 발표된 따끈따끈한 다이어그램입니다. 키보드에서 완전히 구현가능합니다.
모든 S는 P이다
S→P
어떤 S도 P가 아니다
S→•←P
어떤 S는 P이다
S←•→P
어떤 S는 P가 아니다
S←•→•←P
직관적으로 화살표 방향으로만 이동할 수 있을 것 같죠? 맞습니다. 예를 들어, “모든 S는 M이다.”, “모든 M은 P이다.”는 S→M, M→P이며, 이를 연결하면 S→M→P입니다. S에서 출발하여 P에 도착했으니 결론 “모든 S는 P이다.”가 타당하게 도출됩니다.
다음과 같은 규칙도 직관적으로 받아들일 수 있습니다.
대우규칙: 어떤 S도 P가 아니다(S→•←P) ≡ 어떤 P도 S가 아니다(P→•←S)
교환법칙: 어떤 S는 P이다(S←•→P) ≡ 어떤 P는 S이다(P←•→S)
그러면 연습을 해볼까요? (직관적으로 “이게 되나?” 싶은 추론들은 다 성립합니다. ㅎㅎ)
1. 모든 A는 B이다. 어떤 A는 C이다. 따라서 ____
A→B, A←•→C를 연결하면 B←A←•→C이고, 이는 B←•→C로 간결하게 나타낼 수 있습니다. 따라서 정답은 “어떤 C는 B이다.”입니다.
2. 어떤 A도 B가 아니다. 어떤 A는 C이다. 따라서 ____
A→•←B, A←•→C를 연결하면 C←•→A→•←B이고, 이는 C←•→•←B으로 간결하게 나타낼 수 있습니다. 따라서 정답은 어떤 “C는 B가 아니다.”입니다.
3. 모든 A는 B이다. 어떤 B도 C가 아니다. 따라서 ____
A→B, B→•←C를 연결하면 A→B→•←C이고, 이는 A→•←C로 간결하게 나타낼 수 있습니다. 따라서 정답은 “어떤 A도 C가 아니다.”입니다.
덧: * SYLL은 syllogisms(삼단논법)에서 가져온 용어입니다. 관련 논문은 다음과 같습니다.
Pagnan, R. (2013). A diagrammatic calculus of syllogisms. In Visual Reasoning with Diagrams (pp. 33-53). Birkhäuser, Basel.
7. 라이프니츠의 위엄
오일러 다이어그램이나 벤 다이어그램은 시각장애인이 점자로 인식하기에는 다소 어려운 구조라고 합니다. 그래서 2015년 서울대학교 산업공학과 삶향상기술연구실(박우진 교수)에서 시각장애인을 위한 다이어그램을 개발했는데, 다음과 같습니다.
이렇게 하면 두 집합이 겹치는 부분이 어느 정도인지 점자로도 쉽게 확인할 수 있다고 해요. 뭔가 앞에서 봤던 것과 비슷하죠? 네, 라이프니츠 다이어그램과 핵심 발상이 똑같습니다. 박우진 교수님 연구실에서 라이프니츠 다이어그램을 알고 만들었는지는 잘 모르겠지만, 라이프니츠가 참 대단한 사람이라는 생각이 들긴 합니다. 이 역시 라이프니츠의 위엄이랄까요. ㅎㅎ
8. 잡담
2019학년도 수능에 나온 '가능세계' 다들 알죠? 라이프니츠가 “이 세계는 무한하게 많은 가능세계 중 최선의 세계이다”라고 말한 데서 출발한 개념입니다.
또한 수능국어/PSAT/LEET 준비하는 분들은 '라이프니츠의 법칙'도 이미 알고 있을 겁니다.
"라이프니츠는 만일 X와 Y가 동일하다면 이들이 똑같은 특성을 갖는다는 ‘동일자 식별 불가능성 원리’를 제시했는데"
_출처: 2022학년도 수능 예시문항 국어 5~10번
"두 대상이 모든 속성을 공유할 경우 그리고 오직 그때에만 그 두 대상은 동일하다"라는 라이프니츠의 법칙"
_출처: 2010학년도 언어추론(예비) 25~27번
만약 예시문항을 분석하지 않아서 이 내용을 지금 처음 본 수험생이 있다면, 아래 영상을 꼭 보길 바랍니다. 3분 정도면 출제 포인트를 하나 정리할 수 있습니다. :)
필요충분조건 표현법 #라이프니츠의 법칙
https://class.orbi.kr/course/1888/lesson/40685
이해황
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
올해 연전전 0
컷 몇 보시나요? 713중반~714 중반이면 가망 있을까요?
-
학창시절에 연애 한 번도 안 해봤네..
-
현역이때 아예 안풀어봤고 위험한 1임 메디컬 노릴거라 영어 1 안정 되야되는데...
-
ㄷㄷㄷ
-
물2 입문했는데 질문 12
1. 일단 방인혁t 교재 주문했는데 필수본도 사는게 좋을까요? 2. 현정훈 수업은...
-
갑자기 화가난다 13
누구하나 잘못걸리기만해봐.
-
올해 독학으로 4 --> 2로 올렸는데 사실 작년에 강민철 쌤 커리 현강으로까지...
-
화작선택하고 독서문학 공부시간 확보하는게 더 나을것같아요
-
우크라이나,“러, ICBM 발사”...미·영 지원 미사일 본토 공격에 대응 나선 듯 2
우크라이나와 러시아의 전쟁 확전 움직임이 심상치 않다. 미국에 이어 영국도 러시아...
-
예를 들어 원광대 의대면 1. 원광대 다녀요 -> 과 물어보면 의대라고 대답 2....
-
수학 달린다
-
대부분 대학교에 다닐때가 정말 행복한 시기였구나... 15
라는 사실을 취업하거나 회사에 다니면 알게됨
-
물2 교재 주문했다 12
주사위는 던져졌다...
-
지금 진학사나 고속에서 나오는 결과들이 아직 과탐 가산점같은 변표는 반영안한건가요?
-
미친 건가
-
또 살짝 바뀔려나 가장 가능성 커보이는건 발음시 음절끝소리 규칙 최우선 적용?
-
물1vs경제 9
뭐가 더할한함? 물1 첫번째 부터 막힘..
-
이거에서 연경영 가는애가 있음?
-
영화 히든페이스 16
공폰줄 알고 들어왔는데 딴 내용이었슴.. 20분정도 있다 못참고 나와버림 돈날렸네
-
학교쌤이 열공하라고 남은 수능샤프 주셨는데 내년에도 이 샤프일까요?
-
올해 남은기간 0
비문학 특강이랑 올오카 오리진으로 마무리하고 내년에 평가원 전개년 혼자서 분석해야지
-
삼반수 0
안녕하세요 이번 수능 언미영생지 대략 43334나왔고 삼반수 할 생각인데 어떤...
-
유#게# 2
아###
-
작년에 성대가 0
영어1,2등급 똑같은 점수 준 게 처음이었죠? 영어 졸라 어려워서 갑자기 뜬금포로...
-
나 한번만 빌려줘 꼭 돌려줄게
-
3개월동안 일주일에 3시간만 공부하고 과탐 1등급 맞기 7
*공부법은 사람마다 달라질 수 있으며, 정답이 없다는 것을 알려드립니다. 모든...
-
맘편히 공부하게 되는구만 ㄹㅇ
-
부엉이에서 수학 영어 브릿지 많이 주웠는데 1월부터 토요일마다 푸는거 어떻게...
-
진짜눈물이다나네요 기대도안했건만
-
친구들 많이 망했던데 사탐
-
ㅈㄱㄴ
-
올만에 풀려니까 은근 빡세네
-
앙 앙 기모띠 ㅋㅋㅋㅋㅋ 앙 기모띠 ㅋㅋㅋㅋ
-
수능 전에 진짜 존나불안했는데
-
이게무슨
-
할 게 없엉..
-
한녀다같이 연대해 퓨ㅠㅠㅠ 한남 다 없어졌으면 하긔
-
30분은 미뤄야겠네
-
모든 입시 사이트가 다 작년처럼 잡고있나요
-
5년즈음 후면 쟤들도 알게될텐데 사는게 얼마나 드럽고 무서운건지를
-
소문으로는 영어강사라던데
-
1월부터 일주일에 한 번씩 실모 풀어보려하는데 이감, 상상, 바탕 등.. 이런...
-
12.07 뉴진스 12.08 악뮤
-
나오는 지 아시나요
-
하 1차 뚫었다 1
올해는 제발 최종까지 가보자고
-
학교 설의3명인가 암튼 꽤나 빛나던 해였던거같은데
-
국어.....-->기출 최근 기출은 7번씩 보고 10개년기출 보고 옛기출도...
-
어떻게 이렇게까지 컷이 올라갈수가 있지여러분 육군도 숨꿀 많아요...
파그난의 방식은 좀 어렵네요.
킹갓해황쌤
이것이 바로 라이프니츠의 위엄이죠
이것이 바로 실력파쌤의 위엄
실력파임을 강조하기 위해 본문하단에 제 얼굴사진을 방금 넣었습니다.
찰스 도지슨 A.K.A 루이스 캐럴
뭐라는거죠?
오..
이..이게뭐노..
해황쌤 리트 준비생인데 혹시 오르비클래스에 리기추 강의 업로드 일정계획이 어떻게 되실까요?? 막판에 3개년 기출 정리하고 시험장 들어가려고 하는데 21년도와 22년도는 각각 2지문씩밖에 업로드가 안되어 있어 근 1-2주 내로 추가 업로드 계획이 있으신지 궁금합니다 ㅠㅠ
감사합니다!