[칼럼] 도형에 대한 기본적인 생각
게시글 주소: https://h.orbi.kr/00058390961
안녕하세요.
오늘은 수학 칼럼입니다. 주로 2~3등급 이하 학생 분들이 보셨으면 좋겠습니다.
상위권 분들은 도형에 약하시다면 가볍게 봐주세요..!
도형에 대해 떠오르는 것이 있어 간단하게만 정리해보려 합니다.
도형 문제는 어느 정도 풀이가 정해진 측면이 있습니다.
물론 수학을 잘 하시는 분은 워낙 많고, 간결한 풀이와 정말 기발한 풀이가 넘쳐 나지만
그럼에도 일반적인 관점에서 도형은 해야 할 것들이 고정되어 있는 편입니다.
다시 말해 2~3등급 분들이 지금 당장
수학 칼럼을 쓰시는 독존님이나 악어새님 등등..처럼 될 수는 없어도
저만큼은 하실 수 있을 겁니다.
전 문과거든요
도형 문제 학습에 있어서 가장 큰 애로 사항은,
"답지를 보면 알겠는데 어떻게 떠올려야 하지?"가 아닐까 싶습니다.
더군다나 답지를 본다고 실력이 확실히 느는 것도 아니고..
누군가 '이유'를 설명해줬으면 했습니다.
1. 삼각함수 값 하나를 준다면, 그건 모든 정보를 제시한 것이다.
제가 좀 헤매던 부분 중 하나입니다.
sin법칙과 cos법칙을 따로따로 물어보면
외접원 주니까 sin, 세 변 or 두 변과 끼인 각 주니까 cos
이런 식으로 쉽게 처리할 수 있었습니다. 이게 딱 쉬운 삼각함수 3점 문제겠죠.
그런데 조금만 어려워져도, 여기서는 sin, 저기서는 cos, 썼다가 안 썼다가 뭐 어쩌라는 건지 알 수가 없었습니다.
그런데 알면서도 활용하지 못했던 것이 있었다는 걸 어느 순간에 알게 되었죠.
하나의 삼각함수 값만 줘도, 적어도 삼각형 안에서는 모든 삼각함수 값을 다 준 것이나 다름 없습니다.
sin값을 줘도 cos값을 구할 수 있고, 그 반대도 마찬가지이죠.
그러니까
"sin값을 제시했지만 cos법칙을 활용하려면 값을 이리저리 바꿔야 한다!" 이게 아니고
애초부터 삼각함수 값은 다 주어져 있었다는 겁니다.
문제로 보겠습니다.
여기서는 sin BCD만 주었지만, 사실상 cos값도 같이 준 것이겠죠.
정말 당연한 이야기인데, 이걸 의도적으로 생각하고 풀면 안 보이던 게 보이기 시작합니다.
2. 보조선은 보조선을 긋기 위해 존재하는 것이 아니다.
이건 정말 중요한 이야기라고 생각합니다.
학생들을 가르치다 보면 '보조선을 긋는 것 자체'에 매달리는 경우가 많습니다.
하지만 보조선의 의미는 그런 데 있는 것이 아닙니다.
문제로 살펴보겠습니다.
이 문제의 마지막에서 저는 cos값을 찾으려고, 그리고 sin값을 찾으려고
그러니까 '직각삼각형을 만들기 위해' 보조선을 그었습니다.
2-1. 삼각형에서의 삼각함수 값을 활용할 생각도 해야 한다.
보조선과 연결되는 이야기인데
보통 sin, cos, tan의 정의 그대로를 기억하거나,
sin법칙, cos법칙 그 자체만 생각하는 경우가 많습니다.
그러나 우리가 중학교 때 배웠던 것처럼
삼각형에서의 삼각함수도 구할 줄 알아야 합니다.
피타고라스 정리와 연계되는 경우가 많죠.
위에 나온 문제에서도 마찬가지입니다.
3. 변형 공식은 암기해둘 필요가 있다.
sin법칙에서 나오는 공식이 았습니다.
저는 다음 세 가지 공식을 모두 외우고 있습니다.
cos법칙에서 나오는 공식이 있습니다.
저는 다음 두 가지 공식을 모두 외우고 있습니다.
워낙 문제를 많이 풀고,
또 수학 실력이 뛰어나서 안 외우고도 자유자재로 전환이 되는 사람은 모르겠지만
(사실 그런 사람도 머리 속에 이미 '외워져' 있는 거겠죠.)
일반적인 학생들은 "아니 누가 변형 공식을 무식하게 외움? 그냥 현장에서 식 변형하면 되지."
라는 생각을 많이 합니다.
그렇지만 이런 문제들이 나왔을 때 보자마자 풀이가 시작되려면
체화의 과정도 분명 필요할 겁니다.
삼차함수 비율 관계를 현장에서 증명하지 않는 것과 비슷한 맥락이라고 생각합니다.
특히 cos 공식 같은 경우, 저는 두 번째 공식을 훨씬 더 많이 쓰는 거 같네요.
솔직하게, '반드시' 암기해둘 필요가 있다고 말하고 싶습니다.
최상위권이 아닌 이상 머리 속에 넣어두지 않으면 바로 꺼내 쓰기는 어렵다고 생각합니다.
당연한 이야기이지만, 암기에 앞서 이해는 필수입니다.
4. '나만의 말'로 여러 가지 도구를 정립해두자.
많이 얘기했던 부분입니다.
'같은 cos값을 다른 삼각형에서 활용하기', '각을 넘기면 cos은 마이너스' 등
문제에 곧바로 써먹을 수 있도록
관련 개념을 나만의 말로 다듬어 놓는 것이 좋습니다.
5. 삼각형의 변과 각에 대한 명칭
이건 그렇게 중요한 건 아닌데
쉬운 문제에서 삼각형을 매번 그림으로 그려가며 푸는 학생들이 있어 간단하게만 넣겠습니다.
다들 배웠던 내용일 겁니다.
문제에서는 이런 식으로 활용될 수 있겠네요. 3번 파트에서도 똑같이 썼었죠.
더 생각나는 것도 있지만 기본적인 건 이 정도인 듯합니다.
읽어주셔서 감사합니다.
유익하게 보셨다면 좋아요 + 팔로우 부탁드립니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
강k 국어 0
강k 국어 10회 혹시 질문 답변 가능하신 분 계신가요? 풀땐 그냥 평소처럼 푼줄...
-
히나만 풀겠어요
-
애미가 없노 0
ㅅㅂ
-
러셀 손우혁쌤 0
러셀 손우혁쌤 많이 어려우신가요???.. 지금 고2인데 고2 10모 백분위...
-
문제를 쉽게 줘서 망정이지 이걸로 어렵게 내면 ㄷㄷ
-
이시기 쯤 2
보통 뭐하세요?? 매일 실모 할당치 풀고 휴식 이러면되나여 국어연계나 더 읽을까...
-
8시 10분인가에 감독관 들어와서 이것 저것 설명하잖음 뭐 반입 물품 등등 근데 맨...
-
매년 수험생의 행동패턴이 달라지지 않아
-
화작입니다
-
유빈 2
트리플에스 공유빈
-
이 그림은 시험실 감독관이 들고 오는 문제지 봉투에도 인쇄되어 있음. 한 시험실에...
-
1컷 50감?ㅋㅋㅋㅋㅋㅋㅋ
-
국어 수학 영어 한지 세지 56 76. 2. 50. 50 인데 이거 그대로 수능까지...
-
생윤황들 주목 1
롤스가 시불의 대상에서 세제법도 포함시키나요?? 테일러가 모든유기체들은 상호책임을...
-
인+동인가요 아니면 인간만인가요
-
그리고 문학의 정보 경중이 보이시나요 이건 중요하고 이건 세부정보다 이게 파악이되서...
-
아니 ㅅㅂ 5
설맞이 2-2 풀었는데 잇올에서 답지를 시즌 1걸 가져와서 못매기네 와 진짜 병신인가
-
올해 다시 회귀한다고 하는 거 봐서 높으신 분들이 좀 관심이 떨어지셨나 이러다가...
-
현역 수능 질문 3
연필 몇개 챙기라는 사람들 있던데 샤프는 가져가면 안되는 건가요? 그리고 따로...
-
마키마 누나가 주물러줬으면 좋겠다
-
문학 연계 고전시가 -> 고전소설 -> 현대 시 -> 현대소설 0
이게 맞나요? 걍 수특에 에 있는 내용이랑 답지에 있는 전체 줄거리만 봐도 충분하겠죠?
-
17번 존나 어렵네여 밑줄 의미 단어<--14 다음 가는 킬러인듯
-
공부하다가 자 버림 시발 해장국 너무 든든하게 처먹었나
-
수능장에서.. 신발에핫팩붙일까 생각해봄 하진 않았지만
-
책상서랍 1
수능날 책상서랍에 수험표나 지우개 omr같은거 넣어둬도 되나요?
-
대학생활 가능? ㅋㅋㅋㅋㅋㅋㅋ
-
몇층에서 떨어져야 죽지 15
집에 아무도 없는 줄 알고 전화로 야한 이야기하다가 알고보니 안방에 아빠가...
-
그거 다 인.싸들이 아싸 놀리려고 지어낸거잖아 성교육 시간에 남녀가 손 잡고 자면...
-
남고 여고는 화장실 문제니까 그러려니 한데 남녀공학도 왜 단성으로 쓰는거지
-
결과는정해졋고 난주사위굴리러
-
25 6모 국어 0
3개월전에 푼거 다시풀었는데 81점이 말이되나 하
-
수능의 본질을 깨닫는 날이 올까요...... 오지요 반드시 오지요......
-
학평 수능 작품 0
겹치게 수능에 나온경우도 있나요?
-
고대 철학과 0
국 94 확통 96 영1 탐구 99 97 이면 가능??
-
정시컨설팅 0
시대인재 같은곳은 안다니면 못받죠? 오르비에 유명해보이는 컨설팅업체들이나...
-
사회- IMF 과학- 단백질 접힘 인문- 사르트르의 존재론 고전소설- 유씨삼대록...
-
작년 재수 때 같은 고사장에 아는 친구 있었는데 과연 올해는?
-
사실 84.. 15 22 28(찍맞) 30 예상컷 있나요?
-
어디있어요?
-
강대k 궁금한점 2
강대에서 더프 무보정 96이라던데 왜 강k만 컷이 80점대로 내려가나요 난이도 차이 크지않은거같은데
-
현우진 시발범 개념 들을 때도 이해는 가는데 뭔가 그래서 이걸 어떻게 적용해야...
-
안가람쌤 배경빈쌤 수업이 많이 어렵나요? 이번 고2 10월 모고 4등급입니다
-
점메추 해드려요 24
맛있는 점메추해드려요
-
군필 육수임 0
근데 수능 응시는 1번함 케인루트 되는데 이거 어캄?
-
영어 풀 때 1
영어 풀 때 모든 문제 다 처음부터 해석해 나가면서 비교적 쉬운 문장으로 이루어진...
-
이번에 세정에서 일요일 날 고정민이 깔리는거 같은데 현강에서 주시는 자료가 무엇인가요?
-
요강에 안 적혀있는데 뭐지
-
현역땐 우리 고사실에 고3 같은 반 애들이 절반이었고 사수때는 같은 학원 다니던...
-
1. 제발 현역 애새끼들이 답 맞추는 거에 신경쓰지마라 시끄러우면 나가서 얘기하라고...
-
이감과 수능 3
현장 체감 시간 비슷하셨나요? 20 21 본 세대인데, 전문항 타이트하게 풀고 시간...
선 좋아요 후 감상
4번은 도형은 물론 수학할 때 되게 중요한 마인드인 것 같네요
작년 9평 14번 ㄱㄴㄷ 문제에서도 식만 보면 되게 거창해보이는데 그냥 ‘(p,f(p))를 원점으로 옮겨’ 라고 번역만 하면 문제의 난이도가 한결 수월해지는 것처럼요
작년 9평 22번 평균변화율 극한식에서도 그렇고 특히나 함수 문제나 도형문제에서 포장지 한겹 쌓인둣한 문제가 많아진 것 같아요
결국 자기가 얼마나 이해를 해두었느냐가 되게 중요한 거 같아요
다음에는 나만의 말 칼럼을 한 번..ㅎㅎ
좋은 칼럼 감사합니다! 근데 한 가지 실수가 있어서요 1번 내용에서 선분 BC 길이 구할 때 2sqrt21을 2sqrt2로 쓰셨어요
이건 제 개인적인 팁이면서도 하나의 기본기인데 삼각형 결정조건과 그에 따른 삼각형의 해법(삼각형의 모든 내각의 크기,변의 길이를 구하는 법)은 모두 암기해두는게 좋습니다. 이때 삼각형을 풀고 싶으면 복잡하게 사인법칙이나 코사인법칙을 활용하는 것 보단 적당히 수선의 발을 내리는 풀이가 간편한데 이건 본인이 직접 모든 케이스들을 그려보면서 어떻게 수선을 내려야 풀리는지 연구해봐야 합니다. 예를들어 변이 세개 주어지면 세 내각은 모두 코사인법칙으로 구할 수 있고, 내각이 두 개 주어진 경우 세 내각이 주어진 것과 동치이므로 아무 변이나 하나 알면 삼각형이 결정됩니다. 이때는 수선의 발을 적당히 내리면 삼각형이 무조건 풀립니다.(안 풀리면 보조선을 잘못 그은 것입니다.) 내각 하나,변 두 개인 경우 끼인각이면 코사인 법칙을, 끼인각이 아니면 수선의 발을 내려서 풀면 됩니다. 끼인각이 아닌 경우 원칙적으로 삼각형이 결정되지 않고 두 개의 케이스가 존재하지만 보통 도형문제에서는 그림이 주어지므로 그림 상에서 수선의 발을 내려보면 삼각형이 결정됩니다. (삼각형이 예각삼각형인지,둔각삼각형인지로 케이스가 갈리기 때문에 그렇습니다.)
맞아요. 이번 13번에서도 루트10 구하는거
코사인법칙으로 다들 풀었던데 수선만 내리면 특수각이라 1:1:루트2 눈으로 봐도 나오죠..
사실 의외로 도형이 제일 발상적인 그런게 적은듯
시키는 대로만 슥슥하면.. 애들이 기하 하도 어려워해서 일부러 쉽게 내는걸수도 있긴한데
적분은 진짜 어려운 논술문제 같은거 보면 이걸 이렇게 치환해? 이런게 아직 잘 안보여요 ㅜㅜ
진짜 어려운 문제는 도저히 못 풀겠지만..