수학 자작 킬러문항 3000덕
게시글 주소: https://h.orbi.kr/00061003359
답을 댓글에 적어주세요
함수 g(x)는 상수 k1에 대하여 k2의 값이 변화할 때 불연속인 점의 개수를 정의한 것입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
항공대,한서대 항공운항 지망하는 군수생입니다. 현역때 항공대 2차 신검합격하고...
-
공군사관학교 조종으로 입학한 이후로 여러가지 사유로 인해 다른 특기로 변경하는...
3중 절댓값 씹;;
와
나조건 만족하는 그래프를 삼중근 사차함수밖에 못찾았는데 불연속 x개수가 3개가 안나와서 포기..
잘 푸셨습니다. 중간일 때 2개가 나오고 나머진 3개가 나올걸요?
k2가 대충 작은 양수일때라 치고 불연속점이 k1=k2,극점y좌표-k2,극점,극점y좌표+극점y좌표+k2 총 4개가 나오는데 제가 어디서 잘못푼걸까요
발문이 k1이 양수일때 다 만족 한다고 말하는게 맞죠? 어떤 양수 k1 일때가 아니고
아니라면 어떤 양수 k1에 대해 함수 n(k1)은 ~ 이렇게 고쳐야 할거 같아용
모든 k1이 맞지 않나요
정의역이 k1인 함수인데
k1이 상수일리가요
근데 k1이 고정이어도 k2에 따라 달라져서..
한 n함수에 대해서 보면 k1이 변수이고 k2는 상수이니까요
g(x)는 k1이 고정일 때 k2의 변화에 따른 불연속인 점의 개수를 정의한 것입니다.
근데 그럼 n(k1)이 아니라 n(k2)이어야 하는거 아니에요?
네. 문제에서는 k1이 양수일 때만 다룬다고 했습니다.
이차함수 개형이고 근이 두개인 가장 간단한 형태로 f(x)를 잡아도 k2가 매우 작은 양수일 때 n(k1)의 불연속점이 4개 나오는데, 불연속점 3개가 가능한가요?
한 가지 특수한 케이스에 대하여 가능합니다!
조심스레
f(x)에 붙은 절댓값이 있어야 하는지 여쭤봅니다..
있어야 합니다!~