[박수칠] 2016학년도 포카칩 모의평가 예비시행 해설
게시글 주소: https://h.orbi.kr/0006105887
2016학년도 포카칩 모의평가 예비시행(B형) 해설-박수칠.pdf
2016학년도 포카칩 모의평가 예비시행(A형) 해설-박수칠.pdf
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
자기가 사실은 입시 노력해볼만한 재능충인지 판별하는 방법 4
1. 엄마 아빠가 전문직, 교수, 고위공무원, 대기업 등등 2. 기본적으로 집에...
-
아 잇올가기 0
ㅈㄴ 싫다
-
최종때 붙는 경우가 있음?
-
나랏말쌈 개정 2
서점 갔다가 나랏말쌈 있길래 걍 샀는데 작년 버전이엇음.. 내 삼만원.. 언매...
-
살려줘 .....
-
자기가 사실은 재능충이었을 0.000001% 확률에 기대고 뒤늦게 입시공부 시작하는거? 1
자기가 극악의 확률로 사실은 재능충이라서 그동안 노력을 안했을 뿐이고 지금부터라도...
-
꾸중글 3
꾸중듣기
-
죽기전에 지자기 역전 한 번 보고싶음 몇십만년에 한 번이면 나름 희귀한건데,,...
-
기차지나간당 6
부지런행
-
공부 하는것도 기초적인 공부체력이 필요한데 난 이날부터 미친듯이 공부할거야 맘먹고...
-
25수능 생명과학1 해설영상 찍어봤는데 피드백ㄱㄴ? 6
과외생들 보라고 재미삼아 찍어봤는데 피드백은 커뮤가 제일 활발할 것 같아서 올려봐요...
-
국어끝나고 탈주하는 사람 봤는데 이해가 안되던데... 1년을 열심히 박고 그렇게...
-
↑18년 전 예시 국어 강사질 햇수로 10년 넘게 하면서 몇 가지 배운 게 있는데,...
-
탑애쉬 해야지 3
-
86명 점공에 82명이 1차합격 인증 1차합격이 108명인거 고려하면 76% 정도
-
수린수린아 1
시발 밤사이에 무슨 짓을 한거니....
-
수1 수2 마지막으로 공부한 지 각각 1년, 5년이 지나서 이걸 뉴런부터 들을지...
-
전라도에서 열심히 환자를 위해 인술을 펼치셨으면 하는 바램이 있음
-
애초에 공대생이나 의대생이 다른데에 신경을 많이 쓰면 졸업을 못한다고
-
1186381 오르비언성적표 도용해서 올리다가 쪽지보내니까 슬쩍 글삭닉변하고 전부...
-
점공 좀 해주세요 다같이 하면 상부상조잖아요
-
얘들아 2
자이스토리 기하책 22000인데 17100에 샀거덩 다음날 수2책 살ㄹㅕ고 같은곳...
-
25수능 보면서 고사장이 그리 시끄러울 수 있구나 첨 앎 1
24수능때는 국어 끝나고 세명 탈주 수학 끝나고 정적 영어 끝나고도 아무말도 없어서...
-
그럼내가 오전1시에잠들어서 오전3시에일어났다고? 수면이점점이상해진다
-
하
-
시립대 조기발표각임
-
소곱창먹고싶다 3
배고파 소곱창은 너무 비싸
-
타지에서 해서 6시에 출발해여 되눈데 클랏다 ㅋㅋㅋㅋ
-
가형임에도 만표가 154,153 ㄷㄷㄷ 1컷 81,79 통합수능이었으면 1컷 70밑에 나왔을지도
-
새벽피방후 1
새벽 헬스장 후 귀가 다들 잘자요
-
최저러라 표점 필요없음 사탐은 안정1 필요함 현역 시절 생윤 공부가 너무 힘들었음 정법 좋아함
-
제발요...
-
개심심해서 최수준 생2 현강들으러감
-
이러면 이제 나처럼 살엄청찌는거임 태양질량의0.66배까지늘어나고 핵융합이시작됨
-
미미미누 존나 자주볼수있음 실물 ㄹㅇ 잘생김
-
외계인피자 프레드피자 뉴욕어쩌고피자 스폰티니피자 더피자스탠드 기타등등피자 맨날 피자시켜먹어서 살이찜
-
24미적 공1선3 84점 백분위 97줬었음 나도 당연히 1등급이겠지 하며 있었는데...
-
걍 배달을 애용하긴 했음 어글리딜리셔스(미국 뉴올리언스식 양념치킨) 외계인피자...
-
카카오맵에 다 저장할게요
-
독서인강추천제발 1
현역때도 문학은 잘해서 항상 틀려도 1개 이하였는데 비문학이 너무 어려워요...
-
70키로 안 넘는 사람은 이 약 절대!! 먹으면안돼! ㅇㅈㄹ
-
24국어도 멘탈은 안나갔었는데 24미적은 시간 15분 남었는데...
-
어쩌자고 지금까지 안잔건데ㅔ
-
미래향(직원이랑친해질정도로자주감) 미스꼬레아 김치볶음밥(걍 주말마다감) 버거킹...
-
언매 하시던 분들 혹시 작수 화작만 풀어본 분들 계심? 15
시간 얼마나 걸리고 몇개 정도 틀리셨나요
-
10레벨이에요 1
레벨 높으면 좋은거죠?
-
배고프네 2
라면 끓일까
-
진짜 올해 수험장에 아는애들 너무많아서 답맞힌게 한임.. 우리 고사장에도 2명이나...
안녕하세요 선생님 해설 감사합니다!
29번과 관련해서 저번에 쪽지받고 처음엔 이상하게 생각했는데 그날부터 천천히 고민해보니 선생님의 말씀이 타당한것 같습니다.
만약 선생님 말씀대로 해석하여 문제를 풀경우 최댓값이 아마 더 커질것같은데 이부분에 대해서 계속 고민하고 있으며 더 엄밀하게 논증해서 답안을 내어 오르비에 올려보도록 하겠습니다.
댓글 감사합니다~ ^^
저도 고민을 많이 했는데요, 일단 해설지에는
1. 원과 정육각형의 접점이 변의 중점인 경우
2. 원과 정육각형이 접점이 변의 중점이 아닌 경우 (단, 원과 정육각형이 접하는 것을
원과 정육각형의 변이 접하는 경우로 봄)
로 나눠서 풀었습니다. 말씀하신 대로 2에서는 답이 조금 커지구요.
원과 정육각형이 꼭짓점에서 만나지만 변과 접하지는 않는 경우
(설명이 조금 어려운데 29번 해설 맨끝에 그림이 있습니다)도 생각할 수 있는데
복잡해서 안실었습니다. (사실은 포기ㅎㅎ)
해설지 만들면서 문제 만드는데 공을 많이 들였다는 느낌이 확 들었습니다.
좋은 모의고사 만들어주셔서 감사하단 얘기 드리고 싶어요!
해설지 너무 감사드립니다.
해설지 보고 몇가지 궁금한 것좀 물어볼게요.
19번에서 D와 C의 y좌표를 잡으실때 +- 3/2 (플러스마이너스 3/2) 로 하지 않아도 되는 이유가 궁금합니다.
20번 ㄷ 에서 f(x)의 변곡점을 f ` (x) 의 그래프 개형을 그려봤을 때 f ` (x)가 극댓값 혹은 극솟값을 가질 수 없으므로 변곡점이 존재하지 않는다라고 하면 논리상 문제가 되는 부분이 있을까요??
29번에서 원과 정육각형의 교점이 정육각형의 한변의 중점인 경우 에서 정육각형의 중심을 H라 하고
O1P 벡터를 O1H 벡터 + HP 벡터로 하고 O2Q 벡터를 O2H 벡터 + HQ 벡터로 하면 최댓값을 구하는과정이 많이 간단해지지 않을까요??
[19번] 결론부터 말하면 두 평면이 직교하고, 각각의 평면이 x축에 대해 대칭이기 때문에
점 C의 y좌표가 3/2일 때나 -3/2일 때, 점 D의 y좌표가 3/2일 때나 -3/2일 때 모두
선분 CD의 길이가 같습니다.
이해를 위해 그림으로 따져 봅시다.
아래 링크의 첫 번째 그림에서는 두 점 C, D의 y좌표가 모두 3/2입니다.
http://image.fileslink.com/245c2e99852ba68/Microsoft_PowerPointScreenSnapz017.jpg
첫 번째 그림에서 두 점 C, D의 xy평면으로의 정사영을 각각 C ’, D ’이라 하면
이 점들과 두 점 C, D에서 x축에 내린 수선의 발 두 개로
두 개의 회색 직각삼각형을 만들 수 있습니다.
이 삼각형들을 평면 √3y-z=0에 대해 대칭이동시키면 두 번째 그림이 나타납니다.
이때 선분 CD의 길이가 변하지 않고, 평면 √3y-z=0에 x축이 포함되어 있기 때문에
선분 CD와 x축이 이루는 각도 그대롭니다.
두 점 C, D의 y좌표가 모두 -3/2일 때도 마찬가지겠죠.
그리고 해설지에서 경우들을 고려하지 않은 것은
문제에서 cos² (theta)의 값들의 합이 아니라 cos² (theta)의 값 하나만 구하라고 했기 때문입니다.
이런 경우에는 가능한 모든 조건을 다 따질 필요 없이, 조건을 만족하는 경우 하나만으로
답을 내면 문제 푸는 시간을 줄일 수 있죠.
[20번] 문제에 주어진 함수가 아니라 일반적인 함수에 대한 질문 맞죠?
f ‘(x)의 도함수가 f ‘’(x)이므로
f ‘(x)의 극점에서는 f ‘’(x)의 부호 변화가 생기기 때문에 f(x)의 볼록한 방향이 변합니다.
즉, f ‘(x)의 극점에서 f(x)의 볼록한 방향이 변하고,
같은 맥락에서 f ‘(x)가 극점을 갖지 않으면 f(x)의 볼록한 방향이 변하지 않는다고 할 수 있겠네요.
그런데 두 명제는 ‘이’의 관계다 보니 반례가 있습니다.
아래 링크의 함수 f(x)는 점 ( a , f(a) )를 경계로 볼록한 방향이 변하는데
이 점에서 미분불가능하기 때문에 도함수 f ‘(x)가 극점을 갖지 못합니다.
http://image.fileslink.com/245c2e99dab6b9d/Microsoft_PowerPointScreenSnapz018.jpg
하지만 20번 문제처럼 두 번 미분가능한 함수로 한정하면 반례가 나타날 일이 없겠네요.
[29번] 해설지의 첫 번째 풀이는 접점이 변의 중점일 때 ’두 점 P, Q가 여기에 있으면
내적이 최대겠구나’를 예상하고 푼 것입니다. 그리고 그것을 확인하기 위해 풀이와 같은
과정을 거쳤구요. 그림 하나에 겹쳐 그리면서 생각하면 간단한데 글로 표현하다 보니
많이 길어졌네요 ^^;
그리고 처음 문제 풀 때 벡터 분해하고, 성분으로 나타내서 접근할까 싶었는데
변수가 2개 생겨서 골치 아플 것 같아 그냥 넘어갔습니다.
그런데 지금 풀어보니 이 방법도 간단하네요...ㅎㄱ
이 방법도 정리해서 추가하도록 하겠습니다 ^^
해설 감사해요 ㅠㅠ
네 학습에 도움 되길 바랍니다.
열공하세요~ ^^
28번 해설 사인셉타값 r+1분의 r인거같은대 수정부탁드립니다
헉 이런 실수를...
수정했구요 피드백 감사합니다 ^^