6월 미적 28번 접근? 사실 2년 연속 예고됨
게시글 주소: https://h.orbi.kr/00063210203
처음에 보자마자 들어야 하는 생각은 '뭐야 시발'입니다. 우리는 낯설고 복잡한 상황에 (정도의 차이는 있지만) 두려움을 느낍니다. 따라서 우리가 낯선 함수나 복잡한 함수에 대해 거부감이 드는 것은 자연스러운 것입니다.
일단 a*b의 값을 물었으니 이것을 한 번에 구할 수 있도록 하거나 a, b값을 각각 구할 수 있는 상황을 설계했을 것을 예상해볼 수 있습니다. (가) 조건은 항등식을 주었고 (나) 조건은 정보 하나를 주었네요!
일단 (나) 조건을 보고 있자니 f(0)과 f(2)를 이용해야할 듯합니다. 그래서 (가)의 식의 양변에 x=0과 x=2를 대입해봅시다. 오 그런데 우변이 둘 모두 a+b로 나옵니다! 그래서 얻은 두 식을 빼주고 (나) 조건과 연립해주면 다음을 얻습니다.
음.. 그럼 a, b에 관한 정보가 하나 더 있어야 a, b값을 결정해 a*b를 구할 수 있을 것 같은데.. 안 쓴 조건이 뭐가 있나 생각하며 발문을 천천히 살펴보니 f(x)가 연속이라는 조건을 주었습니다. 따라서 이를 이용할 생각을 해야합니다.
그러고보니 (가) 조건, f(x)에 대한 이차방정식입니다. 그럼 f(x) 식을 작성해볼 수가 있겠습니다.
그럼 우리는 f(x)가 둘 중 하나가 됨을 확인할 수 있겠습니다.
이때 우리는 저 루트 안에 있는 복잡한 식의 개형을 알고 있습니다. 왜냐하면 a가 양의 실수이기 때문에 안에 있는 그래프 개형만 알 수 있으면 그것에 실수배해준 것임을 통해 바로 알 수 있기 때문이죠! 그런데 안에 있는 그래프 개형 구할 수 있습니다. 복잡하긴 하지만 도함수와 이계도함수를 구할 수 있으니까요! 엄밀한 그래프를 그리기 위해서는 이계도함수를 조사해 볼록성을 표시해줄 필요가 있지만 대부분은 도함수 조사를 통한 증감 파악해서 끝나니 우선 도함수부터 조사해봅시다. (딱 봐도 이계도함수는 너무 복잡할 것 같고...)
그럼 우리는 부호 조사를 하고 싶은 것이니 부호 변화에 영향을 미치지 않는 아이들을 제거하면
라고 생각해볼 수 있겠습니다. 왜냐하면 나머지 다 0 이상이고 -3+2[cos(pi*x)]^2 만 항상 음수니까요! 그럼 저 복잡한 식의 함수는 -sin(pi*x)의 부호 변동을 따르고 얘는 구간 [0, 2]에서의 모습이 실수 전체의 집합에서 반복되는 아이니까 구간 (0, 1)에서 감소하고 구간 (1, 2)에서 증가하는 함수가 되겠습니다. 확장하면 저 주어진 복잡한 함수는 모든 정수 n에 대해 구간 (2n, 2n+1)에서 감소하고 구간 (2n+1, 2n+2)에서 증가하는 함수가 되겠죠!
그럼 다시 여기로 돌아와봅시다. f(x)가 실수 전체의 집합에서 연속이라는 것은 임의의 실수 k에 대해 다음이 성립한다는 뜻이기 때문에
따라서 f(x)는 실수 전체의 집합에서 정의된 함수입니다. 그러려면 저 루트 안에 있는 것이 항상 0 이상이어야합니다. 이는 (가) 조건을 f(x)에 관한 이차방정식으로 바라봤을 때 이 이차방정식의 판별식이 0 이상이라는 것과 같은 뜻입니다. 이때 저 복잡한 함수가 구간 (0, 1)에서 감소하여 최솟값 -1를 갖고 구간 (1, 2)에서 증가하여 최댓값 1을 갖는다는 사실에 초점을 두어보면 a가 양의 실수이기 때문에 우리는 다음이 성립함을 알 수 있습니다.
그리고 앞선 판별식 논리에 따라 다음이 성립해야합니다.
그리고 나서 어떻게 해볼까 생각해보니... 처음에 f(0)과 f(2)가 특수한 숫자? 상황? 이었잖아요. 그러니 다시 여기에 초점을 두어 봅시다. 근데 f(0)>-1이고 f(2)<-1입니다. 그리고 f(x)를 두 복잡한 식을 나타내어봤을 때 하나는 -1 이상이고 다른 하나는 -1 이하였습니다. 따라서 우리는 다음을 확인할 수 있습니다.
그럼 f(x)는 구간 (0, 2)의 어딘가에서 위의 함수에서 아래 함수로 갈아타야할 것입니다. 왜냐하면 위의 함수의 치역은 -1과 -1/2 사이이고 아래 함수의 치역은 -1과 -3/2 사이이기 때문에 위의 함수로는 -3/2에 도달할 수 없고 마찬가지로 아래 함수로는 -1/2에 도달할 수 없기 때문입니다.
저 주어진 복잡한 함수가 구간 (0, 1)에서 감소하고 구간 (1, 2)에서 증가했으며 a가 양의 실수라는 점에서 함수 f(x)는 구간 (0, 1)에서 감소하고 구간 (1, 2)에서도 감소할 것임을 예상할 수 있습니다. 그럼 감소하고 감소할 것인데 주어진 복잡한 함수가 연속함수이니 구간 (0, 1)에서는 f가 연속이고 구간 (1, 2)에서도 f가 연속임에 따라 x=1에서의 연속성만 조사해보면 되겠습니다.
따라서 a값 결정 되었으니 b값도 결정할 수 있고 ab값도 결정할 수 있겠습니다.
28번을 보며 'n축이 중요하다'라고 설명하시는 강사 분들도 있는 것 같습니다. 합성함수는 항상 합성방정식이라는 또 다른 해석 방법을 지니고 있습니다. 직접 속함수의 증감에 따른 겉함수 증감을 파악해 합성함수의 그래프를 그려 문제 상황을 해결할 수도 있지만 겉함수가 방정식을 만족하는 x값들에 대해 그 x값들과 속함수가 일치할 때의 x값을 조사하는, 합성방정식의 해를 구하는 풀이도 떠올릴 수 있어야합니다. 이는 작년 수능 22번에도 마찬가지로 적용되는 설명입니다.
저 (가) 조건을 합성함수, 기울기함수로 파악해 평균값 정리를 적용할 수도 있습니다.
혹은 직접 수식을 정리해 g(x)에 관한 합성방정식으로 생각해볼 수도 있습니다.
이제 이번 28번과 같은 g(x)에 대한 이차방정식 꼴입니다.
이후 (나), (다) 조건 적용하면 p, q값 결정해서 f(x), g(x) 결정할 수 있습니다.
이는 더 옛날 기출에서도 발견할 수 있습니다.
마찬가지로 속함수 증감에 따른 겉함수 증감 예상해서 합성함수의 그래프를 그려가며 문제 상황을 해결할 수도 있습니다.
이제 2406미28, 231122와 같은 어떤 함수에 대한 이차방정식 꼴입니다.
나형 30번이라 그런지 식은 조금 더 단순하죠?
이렇듯 어떤 함수에 대한 이차방정식 꼴은 꽤 자주 보입니다. 사실 삼차방정식도 최근에 출제된 바 있습니다.
뭐 맨날 똑같은 이야기 하고 있긴 한데... 왜 기출 분석이 중요한지는 충분히 느낌 오시죠?
쟤는 f(x)에 대한 삼차방정식을 줬으니 마찬가지로 합성방정식 해 구하기의 관점으로 접근하시면 되겠습니다. 적당히 f(x)=1 넣어보면 주어진 관계식 만족하니 조립제법 써보면
으로 주어진 식을 인수분해 해볼 수 있겠습니다. 이후는 위에 3문제랑 같은 방식
오늘은 이렇게 2406미28의 논리적 풀이를 231122, 221112, 1711나30에 근거하여 살펴봤습니다. 학습에 도움이 되었으면 좋겠습니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
하........... 내일은 비문학도 풀어야하고 인생 ㅈ같으면 7ㅐ추!
-
날 화나게 하지마
-
실제로 사시는 분들이 잠깐 방 들어오게 해주셧는데 한분도 빠짐없이 책장에 다 CPA...
-
육칼 어떰? 2
비비고육개장+칼국수사리 맛있을까?
-
작년엔 강민철 들어서여.. 올해 일클수강하려는데 일클은 전체적으로 마음에 드는데...
-
사문은 고정인데 나머지 하나가 고민임 후보군은 생윤 동사 한지 인데 수능날 잘...
-
Adhd약이 이런 느낌이려나 진짜 한 3개월동안 명치부근 막힌 느낌이었는데 환 먹고...
-
간 사람도 봤었음 현역으로 대학에 입학해서 졸업하고 바로 대기업 가더라...
-
해보고싶어요
-
아무리 수능 망해도 원서영역 경험은 해보고 재수하세요 2
저처럼 재수까지 해놓고도 1월 중순까지 14명 뽑는거면 소수과인지 그중에 몇등이면...
-
내스타일이야
-
화미영물지 현역 6모 51 92 3 93 88 현역 9모 77 88 3 78 88...
-
아무리 생각해도 여길 가는 게 머글들에겐 맞음 아웃라이어는 절대 가면 안되지만...
-
성의 면접 후기 4
진짜 기본적인것만 물어보네요 군인신분이라 시간 내기도 어려웠는데 부대에서...
-
누구 탈릅함? 5
-
히히히 10
맥주 마시써
-
담주면 풀리겠죠....?
-
서연고 내신반영 지역인재 증가 개난장판이 되어버린 선택제도 28수능 대규모 개정...
-
무슨 책을 읽을끼
-
흠 리트 300제 말고 뭐 있지.
-
40퍼 의무 60퍼 권고인데 올해부터 원대 조대 80퍼임 다들 알다시피 원대 메디컬...
-
푸틴의 러시아는 5
좌파인가 우파인가 이거 한번 조사해볼까요
-
컴공 복전 생각있으면 문과 고대--->서울대가 의미있을까요...? 3
제가 로씨행이나 기타 문과 직종을 안고르고 컴공 복전을 목표로 한다면 반수해서...
-
ㅈㄱㄴ
-
흑흑
-
언제 승인해주냐고!!!
-
제가 들어가있는 채널은 17
카톡엔 게임 디코도 게임이랑 씹덕질 텔그는 뉴스 스푸트니크는 심지어 좌편향.. 밖에...
-
연대는 특수한 상황이라 이해ㄱㄴ인데 고대는왜
-
사실입니까
-
뀨뀨대 뱃지 달기
-
근데 저라도 그럴거같긴해요
-
뭐가 더 어려워요?
-
오르비 애들이 서연고, 의치한만 바라보니까 지금 대학사정이 어떤지 현실인식을 잘...
-
어디 고르시나여
-
외대 마인어 vs 홍대 자전가서 전전으로
-
드라마 보면 공주들 다 예쁘던데
-
이걸로 단어장 써도 상관 없겠죠??
-
수학 개념 질문 7
25수능 미적 14, 15, 21, 28, 29, 30 틀인데 수학개념이 부족하다...
-
정석준쌤이랑 송준석쌤은 좋은거같은데 다른분들은 들은내용이 없어서..
-
화작 기하 영어 생윤 윤사 89% 96% 2 96% 96% 투표 부탁드립니다!
-
세젤쉬 개념강좌 오늘로 미적까지 다 끝내고 미친개념 수1 부터 문제 푸는데 왜케...
-
[공부법 칼럼] 정공법 총론 1. 왜 정공법이 필요한가 2
일단 이 칼럼은 나만의 특별한 공부법도 아니고 사실은 거의 모든 상위권 학생이 해본...
-
“나라의 미래가 궁금하거든, 고개를 들어 관악을 보라” 4
시발 답이 없네
-
사설 국어 질문 10
사설 지문 보기에서 납득이 안되는게 있으면 넘어가나요? 아니면 제 국어 실력에...
-
남붕이만 4
다음 중 뭐가 제일 빡침? 난 2
-
맞팔할 사람 있나요 21
잡담 잘달아여
-
ㄹㅇ이
-
ㅇㅂㄱ 8
첨언하자면 합성방정식이 아닌 합성함수의 관점에서의 풀이는 아래를 참고해보시면 좋을 듯합니다!!
https://youtu.be/IA694_xmSm0
들어야 하는 생각은 뭐야 시발입니다 ㅋㅋㅋㅋ간만에 현웃 터졌네요
수험생 입장에서 가장 와닿는 풀이를 지향하고 있습니다 ㅋㅋㅋㅋㅋ
이번 28번 보고 정병호 커리 타기로 햇다 ㅋㅋ
깔끔하고 익혀두면 현장에서 바로 적용 가능한 풀이가 정병훈, 정병호 선생님 해설 중에 많아보이더라고요! 좋은 판단인 듯
역함수 풀이도 좋아 ㅠㅠ
합성함수 해석이나 적당한 구간을 잡아 정의한 역함수를 이용하는 풀이도 깔끔하기도 깔끔한데 제대로 이해하고 나면 예술이라는 생각이 들기도 하죠!! 전 현장에서 적용하기엔 어렵길래 저렇게 '무언가에 관한 다항방정식' 상황 맞이하면 직접 식 써서 접근하는 게 마음 편하더라고요
만약 좌변이 삼차이상이였음 재밌었을것 같네요
역대급 킬러였을등
좌변에 3차 박고 삼각함수처럼 대칭성 딱 보이는 함수 말고 다른 것을 우변에 줬으면 올해 수능 30번에 냈어도 손색 없을 것 같다는 생각? 그럼 221112랑 231122 결합해서 설명할 수 있기도 하고 아님 첫 댓글 답글에 링크 걸어둔 영상처럼 합성함수 해석 묻거나 n축 심화 정도로 설명할 수도 있을테니
3차로 자작문제 만들어 봤는데
풀어 보실래요?
오 네!! 오래 걸릴 것 같긴 한데 올려주시거나 보내주시면 고민해볼게요
흠... 되게 복잡하게 푸셨네요..
복잡하지만 무조건 풀리는 풀이 vs 간단하지만 안 보이면 못 푸는 풀이
저는 둘 중에 전자를 선호하곤 합니다, 수험생 때 후자 추구하다가 몇 번 망해보고 '아무리 설명 들어도 현장에서 적용하지 못하면 아무 쓸모 없다'라는 것을 절실히 깨달았어서..
에고.. 뭐 사실 맞추면 장땡이긴 하죠
맞아요!! 저도 처음 풀 때는 주어진 f(x)에 관한 이차방정식의 해가 항상 존재해야한다는 점에서 판별식>=0 치니 a 범위가 0 초과 1/8 이하 나오더라고요, 그래서 그냥 대충 a=1/8 찍어버리고 답 냈어요
제 최신 글 ㄱㄱ
ㄹㅇ...
앗 맞아요 감사합니다! 수정했어요