6모 14번 논란 정리
게시글 주소: https://h.orbi.kr/00063249579
논란이 된 부분: 위치의 변화량은 벡터에 속하는 물리량이다. 상식적으로 벡터 자체를 갖고 '대소 비교'를 할 수는 없다. 3차원 벡터 공간을 생각할 때에도 시점이 원점이고 종점이 각각 (1, 2, 3), (-1, -2, -3)인 두 벡터 A, B에 대해 A와 B의 대소 비교를 할 수는 없다. 단, 벡터의 크기를 벡터의 시점과 종점 사이의 거리로 정의하기 때문에 벡터 A와 B의 크기는 각각 sqrt14가 되어 일치함을 확인할 수 있다. 따라서 위치의 변화량의 대소를 비교할 수는 없다.
팩트 1. 스칼라는 크기만을 갖는 물리량이고 벡터는 크기와 방향을 갖는 물리량이다. 이는 물리학에서 벡터를 정의하는 방식이다. 반면 선형대수학에서 벡터는 벡터 공간의 원소로 정의한다. 벡터 공간은 합과 상수배를 정의할 수 있는 대상의 모임으로 대표적으로 n차원 벡터 공간이 있다. 쉽게 말하면 2차원 (평면), 3차원 (공간) 등이다.
팩트 2. 벡터의 물리학적 정의를 생각해볼 때 1, pi, e와 같은 실수는 스칼라에 속해보인다. 하지만 선형대수학에서 벡터 공간을 정의하면 실수는 벡터에도 속할 수 있다. 바로 1차원 벡터 공간을 생각해봄으로써 이 벡터 공간의 원소로 실수를 벡터라 정의할 수 있다.
팩트 3. 수학2 교과서에서 변위를 정적분값을 정의하기 때문에 변위는 하나의 실수값에 해당된다. 이때 실수 또한 벡터가 될 수 있음을 확인했기 때문에 문제 없음을 확인할 수 있다. 그리고 실수 간에는 대소 비교가 가능하기 때문에 벡터 간에도 대소 비교가 가능한 때가 있다는 결론에 도달할 수 있다. 앞서 말했듯 이는 1차원 벡터 공간에서 벡터를 정의할 때를 포함한다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
학교지망 확인도 못하네…? 걍 20개 중에 넣어본건가
-
ㅈㄱㄴ
-
머노?
-
등수 비슷하고 최종컷이랑 가까워졌는데 1칸되네 오히려좋아
-
얘 과외마렵네 머리가 좋아서 과외하면 할 맛 날거같은데 …
-
어디가나요?
-
굳이 경외시 건동홍이 아니어도.. 급간 높은 문사철 vs 급간 낮은 상경 붙었다고...
-
애니 캐릭터 이름같아
-
어차피 대학가면 현역으로 온 애+ 현역으로 왔는데 반수하려다 실패해서 복귀한 애+...
-
건양의 지역인재 1
대학어디가로 내신 계산한거 믿을만한 가요? 1점 후반대는 가능한 점수였을까요?
-
어떤 사람이 제시한 의견이나 사람의 행동을 판단할 때 그 사람의 평소 행실에 대한...
-
졸리네 6
오늘 거의 하루종일 잠만 잔 것 같음
-
뱃지 뭐받지 12
한양대 체대 온몸비틀어서 그리고 서성한중 부터는 온몸 비틀어도 불가능 뱃지 뭐달지...
-
헉..
-
가서 낙지보고 오르비 여론조사하는건 조금 야한데...
-
하루종일 숨이 차게 뛰어다닌다 초딩 때 재밌게 봤음
-
흠
-
현역이고 모고는 고2 기준1 고정이고 백분위는 99까지 나옵니다 원래 그냥...
-
친구없으면 괜찮은가 해보신 분들 알려주셈
-
ㅈㄱㄴ
-
안녕하세요. 내년에 고등학교에 입학하는 노베이스 (5,6등급?) 학생이 무슨 강의를...
-
이거 어디감 2
난 후자가 끌리긴 하는데.. 적성때문 ㅇㅇ
-
좋아좋아
-
메가러셀 윈터 모의고사 머구 문과 1등은 나다
-
션티쌤 순삽 강의는 다 내려가서 리앤로 순삽 들을까 생각중인데 ㄱㅊ나요 걍 키스로직...
-
까먹고 프린트 안했음
-
(서울대 합격 / 합격자인증)(스누라이프) 서울대 25학번 단톡방을 소개합니다. 0
안녕하세요. 서울대 커뮤니티 SNULife 오픈챗 준비팀입니다. 서울대 25학번...
-
와 컴퓨터 배율 큰거에서 원래대로 바꾸니까 겁나작아짐 10
기본비율 150% 아니 늙어서 그런가 눈이 침침하니까 잘 안보여;;;;
-
동뱃은과학이다
-
발이 시렵다 0
집에서 양말 신어야겠는데
-
몇주기 몇족 이런거 어떻게 바로바로 나오게 함? 수헬리베 이걸로 그릴줄은 아는데...
-
캬 드디어 내가 원하는 방향으로 인생이 풀리니 기분이 ㅈㄴ 째지노
-
전에 자료를 본거 같은데 어디서 보는지 모르겠네요 개인적으로 국제통상 가고싶은데...
-
* 언급된 포인트를 잡고 내용을 구성하면 선택지를 고름에 있어 어려움이 없을 것이라...
-
ㅈㄱㄴ용
-
ㅇㅇ
-
의대딱대라 ㅋㅋ
-
⭐️ 연세대학교 중앙새내기맞이단에서 25학번 아기독수리들을 환영합니다 ⭐️ 0
⭐️ 연세대학교 25학번 아기독수리들 주목 ⭐️ 안녕하세요! 연세대학교...
-
휴지 확인 안했으면 내가 ㅈ될뻔 했다.
-
연대식 703.5 23
인데 행정이랑 정외 중에서 너무 고민되네요 응통도 가능할까요...? 진학사 / 고속...
-
문과...
-
진학사 모의지원 분석방법 진학사 단어가 글 올라가는지 보려고 테스트해봄
-
일반고 다니는 예비고2인데 이번 여름방학부터 패드사놓고 문제집 스캔뜨고 미친듯이...
-
지방러들이 굳이 인서울을 해야 하는 이유가 있을까요? 공대 기준으로 설연고한서 정도...
-
유빈 근황 5
ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ........
-
메가패스 환급 1
왜 환급대상 메가패스를 구매한 이력이 없다고 뜨지? 환급 안되는 메가패스도 있나여?
-
충사나 볼까
-
취업 면에서만 봤을 때 어디가 낫니요?
-
holy......
님 근데 수학쪽이 혹시 진로신가요
취미입니다
ㄷㄷㄷㄷ
저번에 경제학이 성향상 약간 안 맞는 면이 있다고 하신 거 같은데 혹시 전과도 고려 중이신 건가요?
경제학을 배우며 지적으로도 내면적으로도 배워갈 것들이 많겠다는 생각이 들어서 전과보다는 복수 전공 고려하고 있습니다. 1학년 때 학점이 그리 좋지 않아서 이번 학기부터 열심히 복구해가고 있어요
수1 삼각함수 도형 문제 풀이 질문드립니다 어제 문제를 풀다가 제가 특히 도형문제에서 같은 패턴으로 문제를 망치고 있다는 걸 알게 되었는데요 첫번째는 일단 계산 실수 이건 반복되는 계산 실수가 보여서 그걸 위주로 잡으면 될 거 같은데 두번째로는 도형이 특히 풀이가 많은데 저는 미지수 최소화해서 식을 깔끔히 작성하는 쪽으로 도형을 풀지를 못해서 답을 도출할 수는 있는데 풀이가 너무너무 많고 미지수가 많은 식을 쓴다는 것을 알게되었습니다
이런 문제는 어떻게 고쳫야 할까요? 일단 제가 생각해본 해결법은 최대한 해설을 보지 않고 미지수 최소화 식을 직접 작성할때까지 고민하는 것인데, 결론이 또 열심히 공부하기 인것 같아서 마음이 답답합니다
도형 문제는 미지수 잡아 연립방정식 푸는 것도 좋은데 우선 펜을 쓰지 말고 머릿속으로만 문제를 푸는 훈련을 해보세요! 이때 구체적인 수치를 낸다기보다는 “어쨌든 내가 이 변의 길이는 구할 수 있으니까 구했다고 가정하고 그 다음에 뭘 할지 생각해보자”라는 생각이 핵심입니다.
저는 이 방법을 한완수에서 배웠고 따라하다보니 자연스레 도형 문제는 항상 펜 내려놓고 풀이 방향부터 잡은 후에 접근해서 웬만하면 100분 내에 푸는 것 같아요 (물론 정 안보이면 sin법칙 cos법칙 갈기며 막 구해봅니다 ㅋㅋㅋㅋ 좌표를 올리든 대충 눈대중으로 찍어보든)
아.. 감사합니다 하 도형은 너무 어려운게 정말 그 짧은 풀이를 도출해 내는게 좀 어려운거 같아요
저도 한완수에서 먼저 설계하고 풀어야 한다 보고 많이 연습하고 있는데 계속 쭉 설계하다보면 풀이가 너무 길고(그게 틀린건 아닌데 너무 긺) 해설지 보면 답을 도출하기 위해 너무 깔끔한 식을 작성해내더라고요
저는 개인적으로 짧은 풀이를 지양하는데, 현장에서 떠올리기 쉽지 않다고 생각하기 때문입니다. 그래서 차리리 주어진 상황에 따라 ‘효과적으로 작용할 수 있는 생각들’을 몇 가지 기억해두었다가 문제에서 그 상황을 만나면 나중에 알고 보니 꼭 풀이에 필요하지 않은 작업이었을지라도 일단 해두는 것이 적절하다 생각합니다.
예를 들어 이번 6모 13번의 경우 두 원의 중심에서 각각 주어진 현에 수직이등분선 내려보기? 이거 결과적으로 쓰이진 않지만 처음에 문제에서 원 주고 현에 대한 정보 준 거 확인했을 때 해보면 좋을 작업 중 하나라고 생각하거든요. 이런 것들을 정리해두었다가 다른 문제 상황에도 적용해보는 거죠!
물론 더 좋은 방법이 있겠다만 저처럼 수학적 재능 없는 평범한 사람이 해볼 수 있는 최대치가 아닌가 생각합니다. “상황에 따른 유용한 생각 정리해두고 적용해보기”