2024 수능대비 "SUM 모의고사 season2" 배포
게시글 주소: https://h.orbi.kr/00065014780
23-2 SUM 모의고사 문제지.pdf
23-2 SUM 모의고사 정답표.pdf
23-2 SUM 모의고사 해설지.pdf
SUM 모의고사 Season 2 정오표.pdf
안녕하세요. 서울권 수학교육과 연합동아리 SUMΣ입니다.
저희는 서울에 있는 9개의 학교 수학교육과 학생들이 모여 수학교육 분야에서 할 수 있는 다양한 활동을 하며 교류하는 연합동아리입니다.
(건국대, 고려대, 동국대, 상명대, 서울대, 성균관대, 이화여대, 한양대, 홍익대)
올해 2024학년도 수능 대비를 위한 자작 모의고사를 배포합니다.
SUM 모의고사는 모든 선택과목으로 이루어져 있으며
낯선 상황과 다양한 유형들로 구성되어 있습니다.
오랜 시간 동안의 문항 제작과 검토가 이루어진 모의고사로 믿고 푸셔도 됩니다.
SUM 모의고사와 함께 수능 대비 열심히 하셔서 꼭 좋은 결과 얻으시길 바랍니다.
정오사항
공통 17번, 기하 30번 문항과 공통 20번 해설에 정오사항이 있어 정오표를 업로드합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
경영이 목표인데 그건 어려울거같고 경제도 잘 모르겠고 사회학과가서 복전이나 전과하려는데 가능?
-
친구들은 운동하지말라고 했는데
-
일본어 잘 아는 편은 아니긴 한데 솔직히 개인적으로 한국노래 보다 좋다고 생각함
-
현역 때 정시 시작하면 삼수로 대학 간다
-
말 그대로 타로점 봐드려요. 가벼운 주제는 보고싶은 주제+1~78 중 숫자 3개...
-
기말이 12.5에 끝납니다. 12.10쯤부터해서 3월전까지 정시 베이스깔 생각입니다...
-
나좀뽑아줘 7
제발
-
오늘을 즐겨!!
-
요즘애들은용기가업어
-
ㅇㅈ 9
은 오늘자 서울 어딘가
-
ㅇㅈ 1
-
69수 성적변화 15
6: 98 100 3 95 98 9: 84 95 1 93 99 11: 92 100...
-
질문 받습니다 5
뭐든 가리지 않고 답변해드립니다
-
올해목표겸계획 3
피파 슈챔찍기(현재 최고기록 13x등) 책 100권읽기(현재까지 43권 읽음) 매일...
-
나도 무물 21
-
솔직히 힘듬 0
압박감 때문에 살 ㅈㄴ 빠지고 건강도 안 좋아짐 공부? 지금 좀 노답이긴 한데 중고...
-
지구 3등급 나왔는데 이번 겨방 시즌에 고3이들처럼 개념 다시하는게 맞겠죠?
-
무물할까요.. 13
3명 정도만 왓으면 좋겟다
-
완자같은걸로 개념때는건 불가능한가
-
가능할려나 군대 들가기전에 공부해둬야되나..
-
재수는 반수 포함하면 대치동 애들 70~80%는 하는것 같은데 삼수는 ㄹㅇ 10%정도인듯
-
저도 무물보 9
수험생일 때는 무물보 글 보이면 할게 얼마나 없길래 이런걸 올리나부터 생각했는데...
-
ㅇㅈ 11
-
올해 물1지1 봤고 42/44인데 내년에 사탐런 하려는데 사문하나 박고 나머지...
-
ㅇㅈ 3
그런건 없다 게이야 ㅋㅋ
-
예비고3 정시 작년에 대종쌤 step0,1 체화서까지 다 풀었는데 올해는 승리쌤...
-
한 3개월 힘든일하면서 바짝벌고 그이후 8개월정도공부만하는게낫나요 아님 바로...
-
핵펑크는 2,3급간이겠지요?
-
원래 화미물1지1이었는게 화확지1 사문 으로 바꿀겁니다 3월 입대인데 그 전에...
-
올해 성적변화.. 12
전역하고 마지막 수능 등급/백분위 6월 22311 89/92/99/99 9월...
-
400.5 ㄱㄴ?
-
나는 귀여워요 8
아님말고
-
학교 다니면서 공부하려 하는데 무리인가요??
-
이거왜좋음ㅋㅋㅋ
-
시대인재 조교 1
확통 92 점은 안 받겠죠?
-
무물보 받음 13
ㅇㅇ해봐
-
동사 세사는 역스퍼거들 천국인데 동사>>이거는 본인이 노력하면 수능이기에 교육과정...
-
06재수생 과탐ㅊㅊ 10
현역때 화생 화학에 모든 걸 걸엇는데 이번에 배신당해서...
-
중대 반수생인데 걍 복학하려구요…. 더는 못하겠어요 시발
-
과탐별 타임어택 순위좀 10
화2>생2>생1>화1>물2>물1>지1>지2 이게 맞음?
-
저도 무물보 13
선넘질 ㄱㄴ
-
실시간 엄마왈 1
나 한의대 수시 붙으면 몸에 침 1000대 맞는거 ㅆ가능이라하심
-
사교육 카르텔 ebs랑 부산교육청이 척결해주자
-
무물보의 뜻 2
지피티 피셜
-
ㄱㄱ혓
-
진 무물보 5
만날 술먹고 들어오는 한량이지만...
와!
안녕하세요
기하 30번의 문제 구성/해설에 궁금점이 있어
댓글을 남깁니다
해설지에서는 부가적인 설명 없이
PQ=OO'임을 사용하여 문제를 해결하셨는데
첨부드린 그림과 같이 PQ<OO'인 경우를
다루시지 않은 이유를 조심히 여쭤봅니다..!
직선 l은 두 구에 모두 접하는 직선입니다. 첨부된 첫 번째 그림은 접하지 않고, 두 번째 그림은 두 구의 반지름이 다릅니다. 직선 l과 직선 OO'은 평행하므로 사각형 OO'QP가 직사각형이 된다는 것을 알 수 있습니다.
xy평면에 수직인 평면을 삼각형 OQR로 생각하고 문제를 다시 읽어 보시면 상황 이해가 빠를 듯합니다.
첫 그림이 접하지 않는다는 것이 이해가지 않습니다. 구에 추가로 그려진 원은 OPQ의 단면이며, 단면에 생긴 원에서 PQ가 접하는 상황을 말씀드리고 싶었기에 추가로 두 번째 그림을 그렸습니다. 굳이 평면 OPQ가 O'을 포함하지 않아도 접선의 경우가 나옴이 저의 요지입니다.
직선 PQ와 OO'가 평행한 것은 납득이 되실까요?
애초에 평행하지 않다는 내용이
제 질문에 함축돼있습니다
조금 더 검토해 보고 답글 드리겠습니다.
그림까지 친절히 그려 주심에 대단히 감사드립니다.
현재 첨부드린 그림에 있는 검은 직선들이
R, P, Q 순서의 조건을 고려하지 않은 상태에서,
두 구에 동시에 접하며,
OPQ가 O'을 포함하지 않게끔 하는
가능한 모든 직선 PQ의 경우입니다.
17번 합성함수 미분법 or 치환적분법 없이 논리적 설명 가능한가요?
단순히 점대칭임을 이용하는건 설명이 부족한가요..?
다항함수 f(x)라고 조건을 주었다면 적당한 그래프 그려 설명하거나 직접 수식 세워 설명할 수 있는데, 기함수라는 조건만 주었기 때문에... 치환적분이나 합성함수 미분이 들어와야 논리적으로 풀이를 작성할 수 있다는 것이 제 생각입니다.
다항함수 조건이 없는건 고려하지 못했네요;;
답변 감사합니다
실제로 우함수/기함수 적분 성질 증명을 미적분에서 치환적분을 학습한 후에 할 수 있기 때문에 문제가 될 부분이지 않나 싶습니다.
교과서 내의 적분 공식들은 함수가 연속인 경우에만 적용할 수 있다고 하므로, 다항함수 조건을 주는 게 맞는 것 같습니다.
썸모 관계자 입니다.
지적하신 바와 같이 다항함수로 고치는 게 맞다고 생각합니다.
관심 가져주시고 지적해주셔서 감사합니다.
안녕하세요
위에 문제에 이의 제기한 사람입니다
답변주신 윗분도 관계자분이실 수 있는데,
확실하게 관계자임을 언급하셔서 댓을 달아봅니다
위 댓글에서 질문드린 내용이 맞는지 확인을 간곡히 부탁드립니다
안녕하세요, 썸모 관계자입니다. 해당 문항(기하 30번)의 오류를 확인하였고, 현재 어떻게 수정하여야 오류가 없을지 논의 중에 있습니다.
답변이 늦어진 점 대단히 죄송합니다.
무료 배포임에도 불구하고 열과 성을 다해 작업해주셔 감사할 따름입니다
내부에서 미처 발견하지 못한 오류를 찾아 주심에 제가 더욱 감사드립니다.
수고하셨습니다!!
공통 20번 해설 마지막 부분에서
f=4x^2-78x+81 이 아니라
f=4x^2+78x+81 아닌가요..?
+ 부호가 맞는데, 해설지 타이핑 과정에서 실수가 있었던 것으로 확인됩니다. 오탈자를 제보해 주심에 대단히 감사드립니다.