[칼럼] 고등수학의 연산에서 가장 중요한 한 가지!!
게시글 주소: https://h.orbi.kr/00065891419
안녕하세요. Math Changer 어수강 박사(과천 "어수강 수학" 원장)입니다.
오늘은 고등학교 수학의 "연산에서 가장 중요한 한 가지"에 대해 포스팅 해볼게요!
고등학교 수학의 연산에서 가장 중요한 것은 무엇일까요? 한 번 생각해 보세요!
이를 알고 여기에 초점을 맞추고 공부한다면 고등학교 수학이 한결 쉬워질 거에요. 안정적인 1등급을 받는 데에도 큰 도움이 될 거에요 :)
다음은 각각 초등학교와 중학교 과정의 연산 문제입니다.
초등학교와 중학교에서는 "연산을 숙달하는 것"이 학습 목표이기 때문에 위와 같이 복잡한 계산을 요구하는 문제가 직접 출제됩니다.
하지만 고등학교 수학에서는 위와 같이 "세 자리 자연수의 곱셈"이나 "유리수 9개를 사칙연산 규칙에 따라 일일이 계산"하는 문제는 출제되지 않습니다.
그럼 고등학교 수학에서는 어떤 문제가 출제 될까요?
고등수학에서는 위와 같이 표면적으로는 매우 복잡해 보이지만, 배운 것을 통해 '간단히' 할 수 있는 문제들이 출제 됩니다. 이때,
"복잡한 것을 간단히 하는 도구"
에 초점을 맞추고, "어떤 도구를 사용하는지, 복잡한 식이 어떻게? 왜? 간단해 지는지" 공부해야 합니다.
(물론 [문제2]는 대충 풀어도 쉽게 풀 수 있는 문제입니다. 하지만 쉽고 익숙한 문제에서부터 연습하지 않으면, 생소하고 어려운 문제를 제대로 풀지 못할 것입니다! 쉬운 문제에서부터 제대로 연습해야 합니다!)
[문제2]의 (1)에서는 다음 정리를 사용합니다.
위 정리의 (1)은 차수를 낮추는 도구이고, (2)는 항의 수를 줄이는 도구입니다. 이를 이용하면 허수단위 i에 대한 복잡한 연산도 쉽게 할 수 있습니다. 이를 이해하고 올바르게 적용하는 것이 중요한 학습 목표이기 때문에 시험에도 자주 출제되는 거겠죠?
[문제2]의 (2)에서는 다음 정리를 사용합니다.
위 정리의 (1)은 차수를 낮추는 도구겠죠? (2)도 마찬가지입니다. (2)를 이용하면 이차식을 일차식으로 바꿈으로써 차수를 낮출 수 있게 됩니다. (3)은 항의 수를 줄이는 도구겠죠? :)
이를 이용하면 w에 대한 복잡한 연산도 간단히 할 수 있겠죠? 이것 또한 중요한 학습 목표이기 때문에 시험에 자주 출제가 되는 것입니다!
그렇다면 [문제2]의 (3)은 어떨까요? 주어진 x를 정리하면 다음과 같은 식을 얻을 수 있습니다.
(i, w와 같은 이유로) 왼쪽의 식은 항의 수를 줄이는데, 오른쪽 식은 차수를 낮추는데 유용하겠죠? 이를 이용하면 [문제2]의 (3)도 쉽게 풀 수 있습니다!
물론 [문제2]는 쉽게 유형화 가능합니다. 중상위권 이상이라면 이 정도는 시간이 지나도 쉽게 맞힐 수 있습니다. 하지만 다음 문제는 어떨까요?
[문제3]은 "2021학년도 수능 수학 가형(이과)의 객관식 마지막 문항"입니다. (물론 킬러 문제 치곤 쉽게 출제된 문항입니다!)
하지만 이 문제도 [문제2]에서 연산을 간단히 하는 도구에 초점을 맞추고 공부한 학생이라면 매우 쉽게 풀 수 있습니다.
[문제3]의 (가)로부터 2n을 n, 2로!
[문제3]의 (나)로부터 2n+1을 n, 2로!
임을 이용하면, 주어진 항을 모두 첫째항과 둘째항으로 나타낼 수 있기 때문입니다! (8, 15를 1, 2로 나타내면 끝!)
[문제2]의 차수가 [문제3]에서 항 번호로 바뀐 것 뿐입니다! 문제에 주어진 모든 항을 첫째항과 둘째항을 이용해 나타내기만 하면 [문제3]도 쉽게 풀 수 있습니다 :)
다항식에서 인수정리가 중요한 것도, 함수의 합성에서 항등함수와 역함수가 중요한 것도, 미분과 적분의 역연산 관계가 중요한 것도 모두 복잡한 연산을 간단히 하는 도구이기 때문입니다!
복잡한 것을 있는 그대로 복잡하게 계산하는 것은 고등학교 수학의 학습 목표가 아닙니다. 복잡한 연산을 어떻게 간단히 할 수 있는지에 초점을 맞추고, 무엇을? 어떻게? 왜? 간단히 할 수 있는지 신경 써서 공부할 것을 강력하게 권장합니다! 이것이 중요한 학습 목표이자 수학의 본질이기 때문입니다. 이를 통해, 본질이 무엇인지 깨닫게 되면~ [문제3] 또는 이보다 생소한 고난도 문제를 시험에서 처음 마주하더라도 쉽게 풀 수 있을 것입니다! (기계적으로 답을 맞히는 공부를 한다면 시험에서 생소한 형태의 고난도 문제에서 크게 당황할 가능성이 높습니다. 안정적인 1등급도 어렵겠죠?)
그럼 오늘 포스팅은 여기서 마치도록 할게요. 다음에 또 만나요! :)
PS. 연산에 대한 보다 자세한 설명과 구체적이고 다양한 예시가 궁금하시면 다음의 전자책을 읽어보세요!
docs.orbi.kr/docs/10913/" rel="noopener noreferrer" target="_blank">"서울대 박사가 알려주는 수학의 비밀 - 세 번째 비밀 : 연산"
[오늘의 칼럼 요약]
: 고등학교 수학의 연산에서의 학습 목표는 "복잡한 연산을 간단히 하는 것"입니다. 복잡한 연산을 간단히 하는 도구에 초점을 맞추고, 그것이 무엇을? 어떻게? 왜? 간단히 하는지 공부할 것을 강력하게 권장합니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
신승범 선생님 미적분2 수학적 접근(하) 교재 갖고 계신분 사례합니다. 0
신승범 선생님 미적분2 수학적 접근(하) 교재 갖고 계신분 있을까요?? 2015...
-
https://nz.sa/xAPkS
-
기차지나간당 6
부지런행
-
큰일...
-
마루데도라마미타이나코이
-
독학의문제점 0
수능 다가오는게 실감이 하나도 안나서 긴박감 같은게 전혀 하나도 없고 점점 게을러짐...
-
이 작가는 평생 로맨스만 그려야한다구 셍각해요 이색히들 이때 친구였음 남사친여사친은없다
-
올려주세요
-
너무 피곤해서 내가 뭐라고 칼럼을 ㅋㅋ서ㅛ느디도 모흐셌음 허ㅛㅛㅗ리만...
-
다 맞앗다 3
흐흐흐
-
첫키스 11
두키스
-
국어 6시간 수학 2시간 생2 4시간30분 지1 1시간 대충 이정도 박을건데 제발...
-
여자애 얼굴이 ㄹㅇ 이뻤음
-
이거 구라임 반례를 너무 많이 봄 그게 나쁘단건 아니고 걍 사람마다 다른거임 자랑하고 싶을 수 있지
-
바로 제 선택과목들입니다... 어디가서 홍대병 걸렸냐는 소리 듣는건 아니겠죠 나름...
-
자, 문제 보시죠. 5번 선지만 확인해 보겠습니다. 다 수필의 내용은 대충, 다...
-
목표 11
베테 5개 풀고 자기
-
Goat
-
쪽지하는사람 내 지인인거같다.. 증거가 너무 많아
-
https://nz.sa/xAPkS
-
ㅈㄴ힘들구나
-
24수능 언매 현장응시 백분위 96 1등급 25수능 화작 현장응시 백분위 97...
-
오늘도 그냥 자지말까 15
돌돌돌 이게 아닌데 아무튼 안자고 버틸까
-
모의고사 올리고 싶어요 2월 중순을 목표로
-
죽음의 수면게임 0
생활패턴 어떻게든 개강 전에 돌려놔야 한다..!
-
명절 용돈 7
받던 응애가 엊그제 같은데 벌써 용돈 주는 노인이 되다니,,
-
생패개망했네 1
준밤샘해서 돌릴줄알았는데 2시간+3시간 중간에 기절하고왔더니 잠안옴
-
하무열식 공부법인가 궁금해서 올해 해볼 예정
-
원래 1시에는 자는데, 오늘 낮잠을 3시간을 자서 그런가 이ㅅ간까지도 잠이 안 옴 살려줘...
-
1tb 머가 더 조으려나
-
새벽에 매일 보이는 셋 18
이젠 정겹다
-
재밌으면서도 현타가 확.. 동기의 비게녀 만남썰 듣고 주섬주섬 비게로 향함
-
오후에 낮잠 길게 자서 말짱 도루묵 됨
-
지금듣는노래 0
-
반가워요... 19
.
-
가보자
-
생2 2111 20번 하바베 곱셈공식 활용해서 풀기 8
조금 복잡하긴 하지만 20번이니 어쩔 수 없죠!! 흐흐 피드백은 언제나 환영입니당
-
대충 정리하면, 7 -> 6.7 -> 6.1에서 반응비 1:2인거 캐치해서 방정식...
-
세력인가요
-
새벽 감성 돋는다 18
먼가 마음이 몽글몽글 잔잔해짐 무슨 노래를 듣지
-
뻥안치고 0
여자랑 30분이상 이야기한지 5년됨 도태가 끝이없다
-
왜 아직도 살아있음요
-
조회수가 이상함
-
모두의 프사가 0
애니 만화 동물일때 대 현 우 를 고집하는 나
-
작년만해도 멸종이엇는데
-
질받 13
다들 새로고침만 하지 말고 아무거나 ㄱㄱ
-
https://nz.sa/xAPkS
-
외대가고싶다.. 2
성적이 택도없지만.. 외대에가고싶은나
-
왜 글을 안써
-
잘래요 1
ㅂㅂ
다음은 저의 홈페이지 및 블로그 링크입니다 :)
홈페이지 https://www.soogangmath.com
블로그 https://blog.naver.com
[문제2]의 (3)에서 "x=1-루트2"인데, 오타가 있었네요!