sootak 모의평가 2회 문제지, 답지, 간략해설(스포주의)
게시글 주소: https://h.orbi.kr/0006598694
시험지.pdf
정답표.pdf
주요문항 간략 해설 및 접근방법
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
오늘 같이 포켓몬 고 하기로 했네요
-
심사숙고하는 성격이면 인생 사는 데 좋을 것 같지만 꼭 그렇지도 않더라구요...
-
육군에서 26수능을 볼 생각입니다. 지금 일병2호봉이고 병장 달때쯤 수능을...
-
이이잉 ㅜㅜ
-
병역 문제가 최악이구만 10
큰 목표를 세우고 싶은데 여기 발목이 잡혀서 끝없이 계획이 지연되는구나
-
아니었구나
-
상평시절 17이전말고 18부터 공부하는 게 맞죠?
-
난이도: 하~중 타임어택: 중 미적: 기본적인 개념에 충실 딱히 어려운건 없었음...
-
1컷 얼마임? 고인물들 고려해서
-
N수생이고, 올해 지방 의대는 가능한 성적을 맞았지만, 한 두개만 더 맞았으면 하는...
-
국어와 관련하여 질문을 받아보면 많은 학생들이 글을 ‘이해‘하는것이 무엇인지...
-
아침 6시에 깨는 이 갓생 뭐임?
-
평소에 공부할때 틀리면 100프로 실력이라고 생각하고 공부해야함 애초에 그런걸...
-
공기업vs약사 5
공기업 초봉 4000~5000만원 평균연봉 8000~1억원대 약사 서울권 약...
-
Yg는 진짜 아웃풋이 ㅋㅋㅋㅋㅋ 걸그룹은 블핑 보이그룹은 빅뱅 ㅋㅋㅋㅋㅋㅋ
-
그래도 ㄱㅊ은 편임? 일단 유리한 정황인거지?
-
에스컬레이터 있는 학교는 첨보네 ㄷㄷㄷ 310건물이 유독 좋은건가요..
-
오쿠리시마스
-
to 친애하는 오르비언님 - 이정도론 메디컬 힘든가요..? 8
아무래도 영어 3이 치명적으로 작용하겠죠..? 혹시나 대략적인 라인 알고계신다면...
-
문과 설대식 409.x 학부대학 가능하다고 보시나요 0
내신 bb ~ cc 기준 아 둘 중 뭐냐에 따라 여부가 달라지나
-
진쨔 꿀밤 마렵네
-
도착 3
휴 안 늦음
-
내년에 동사 한번 응시해 보려 하는데, 작년 n제도 사서 풀어봐야 할까요??
-
1타 관계없이 자신한테 잘 맞는 강사 들으면 되는거 알구있는데그래도 추천...
-
충주로 가요 10
건글의 면접을 보러 가요
-
미적 84인데 0
걍 2등급인거 받아들였음 나는
-
택시타고 가는데 빠듯하다
-
여그로 ㅈㅅ 국수영사문지구 93 84 81 47 36 1 2 2 1 3 서성한 경엉...
-
어제 하고 싶은 말 다하고 쳐자서 내 이미지가.. 내 착한 이미지 돌려내..
-
ㅈㄱㄴ
-
가천의 고사실 0
그냥 정해진거 없이 가라는대로 가면됨?
-
맞다면 우리 주변엔 공룡이 아닌 것이 없겠지.... 우린 공룡들 속에서 살고 있다
-
가천의 201호 4
ㅎㅎ
-
다 줘 패야겠어
-
얼버기 4
좋은 하루 보내세요
-
얼부기 6
온앤온
-
그렇다고 30분 늦게 나왔으면 늦었겠지,,,
-
얼버기 4
깨면안되는데 깨버렸어요... 다시잠이안와...
-
왜깼지 2
-
누구 더 추천함?
-
걍 빈 자리가 없는데 최저가 어떻게 됐더라.....
-
연대 현재상황 11
그냥 노답 이제 ㄹㅇ 스카이라는 단어도 한물간듯함 의치한약수가 이 스카이서성한이라는...
-
학교 때매 늦는 거 봐주나요..? 시대 강대 둘 다 전화로 물어봤을 땐 안봐준다고...
-
왜 고민하는 지 모르겠누? 강대 시대 둘 다 해봤고 독재도 해봤지만… 시대가… 아...
-
2년 째 듣고 있는 노래인데 진심 고트
-
이번역반포 0
세종대사수
-
대부분 육군들은 지원하면 무작위로 보직이 결정되던데 차라리 운전병을지원하면...
-
재밌겠군
-
확통 경우의 수 문제 나오면 경우 다 세서 답안지에 적어볼게요
14번, 28번 풀이 부탁드려요... 간단하게 댓글로라도 괜찮으니...
14번
접점의 x좌표를 t라 합시다.
p+t=sqrt(e) - 포물선의 정의
a^2t=4pt (포물선 위에 점이 위치할 조건)
a^t ln a = 2p/a^t (접선의 기울기가 같을 조건)
식을 잘 정리해 주시면 a^2t=e가 나와서 두번째 식에 대입해주시면 pt=e/4가 나옵니다.
첫번째 식과 연립하면 이차방정식을 풀어 각각 구할 수 있겠죠.
ㅠㅠ 너무 어렵습니다
저도 14번, 28번 풀이필요한데... 댓글 써주시면 감사하겠습니다...
28번은 2Hm * 3Hn 해서 m이 1,2,3일때 나눠서 구하시면 되어용
엥...틀렸네요...죄송합니다 다시 구해봐야지
4점짜리 나오자마자 멘탈 승천... 4점짜리는 20번 말고는 모두 포기했어요.
3점과 4점의 변별을 확실히 한다고 한 것이 너무 과했나요..ㅜ
허허허허...할말이없습니다. 더 열심히할게요ㅠㅠ
전..15,21,30번이요..ㅠㅠ
//출제자님께서 직접 풀이해주셨네요... 제 풀이보다 훨씬 나으신거 같아서 그냥 지울게요
14번 접점 미지수 잡고 공통접선임을 나타내면 미지수가 p에 관해서 정리된 식이 도출됩니다.
결국 PQ의 길이는 p+접점의 x좌표이므로 p로 표현이 가능하며 이에따라 p에 대한 2차방정식을 푸시면 됩니다.
21번//
잘리는 부분 넓이가 5π. 접점P(a,b,c)라 하면 접평면, x+√3y=4, xy평면의 법선벡터들로 정사영 2번내리는데 필요한 코사인 값을 각각 구할수있음.
하나는 2/3 이고 하나는 c/3.
즉, 구하는 값은 5π X 2/3 X c/3 =10c/9π 의 최대 최소의 합. 따라서 c의 최대와 최소를 구해야 하는데 그림을 공간좌표상에 그려보면 b가 0일때 c가 최소 최대가 나옴을 알수있음.
따라서 a^2+c^2=9 와 a+√3c=4 를 연립 후 근과 계수의 관계로 c의 합을구함(최대,최소)
그러므로 답은 20√3π/9
근데 15번에서 왼쪽식속미분햇을때 왜 3x^3이 아니라 2x인가요????
f(x^2)함수의 한 부정적분을 F(x)라고 하면 F(x^2)을 미분하는 것이 됩니다. 그러면 속미분으로 2x가 나오게 되지요
1컷 몇점이에요..? 개 어려운데.. 난이도 하향하신거 맞나요? 1컷 어느정도 예상하고 출제하셨나요..?
ㅠㅠ 난이도 조절에 실패한 제 잘못입니다. 17, 18, 19, 20이 쉬워서 괜찮을 줄 알았죠.. 21, 29, 30정도가 최상위권과 상위권을 변별할 것으로 예상했는데 의외로 14, 15, 28번에서 큰 어려움이 있었던 것 같습니다. 2번 시행한 경험으로 다음에는 더 적절한 난이도로 돌아오겠습니다.
아 28번 이해가안되는데 중복조합??써서 푸는건가요? 알려주시면 감사하겠습니다 ㅠㅠ
a^p b^q c^r로 표현되는 건 이해되시죠? 이제 (p, q, r)의 순서쌍 개수를 찾는 문제가 되어버립니다. 여기서 p, q, r의 조건을 찾아서 중복조합을 이용해서 개수를 구하는 것이 접근 포인트입니다. 그렇다고 p+q+r=m+n에서 바로 3Hm+n라 하면 안되는 것이 c의 차수 r은 오른쪽 식에만 있기 때문에 n보다 커질 수 없습니다. 이를 반영하면 r=0일 때 2Hm+n, r=1일 때 2Hm+n-, ..., r=n일 때 2Hm이니 이들을 다 더하면 (m, n)의 성분이 나오는 것입니다.
아이고 어려워...
1회에 이은 불..
하.. 전왜 다들 맞추는걸 틀렷는지 ㅠ26,27번 해설좀 부탁드려요 ㅠ
26번은 어렵게 생각하실 필고없이보통 무리방정식 풀듯이 루트 한쪽을 넘겨서 제곱하고 정리해서 다시 제곱한 후 정리하면 삼각방정식이 나옵니다. 합성한 후 일반해, 시그마계산까지 호흡이 긴 문제일 뿐입니다.
27번도 타원의 방정식 세우고 x=1일 때 y를 표현한 다음 접선방정식 공식에 대입하면 직선 식이 나오니 넓이조건으로 타원방정식을 완성할수 있겠죠.