극한 계산 때 주의할 점
게시글 주소: https://h.orbi.kr/00066464692
안녕하세요. 여기서 이런 칼럼글은 어째 처음 써 보는 것 같아 시작을 뭘로 해야 할지 애매하네요...
극한 문제를 풀 때 여러 가지 편법이 있죠. 로피탈이라던지 테일러 급수라던지...
이런 방법을 쓸 때에는 다 전제조건이 있어서 헷갈린다거나, 아니면 이게 교육과정 밖이라서 쓰기 싫다거나 하는 이유로 순수하게 극한만으로 풀려는 분들도 요즘 많이 보입니다. 좋은 학습방법이죠.
다만 순수하게 극한만으로 풀 때에는 여러 주의할 부분이 있습니다.
1. 극한 계산을 할 때에는 식 전체를 한 번에 보내자.
잘못된 예시를 몇 개 들고 와 보겠습니다.
이 값이 e로 수렴한다는 것은 자명합니다. 그런데 밑에 있는 x를 먼저 0으로 보내고 지수를 0으로 보낸다면 어떻게 될까요?
밑의 x를 먼저 0으로 보내면 밑은 1이 될 것입니다. 거기다 1/0=무한대 제곱을 해 봤자 1이겠죠.
또 밑변의 길이가 1인 이등변삼각형의 높이를 계산한다고 해 봅시다.
높이를 n이라 두면 빗변의 길이는 루트(n^2+1)이겠죠. 빗변과 밑변 사이의 각을 세타라 하면 코사인법칙에 의해 다음 식이 성립합니다.
여기서 세타를 0으로 수렴시키면 어떻게 될까요?
단순히 세타만 0으로 수렴시키면 3/4 = 0이라는 이상한 식이 되어버립니다. 여기서 문제는 n이 세타에, 혹은 세타가 n에 종속된 변수라는 거죠.
n과 세타는 위의 관계식으로 묶여 있습니다. 따라서 세타가 0으로 가면 자연스럽게 n도 0으로 가게 되는 거죠.
이를 무시하고 그냥 한 변수만 수렴시켜 버리면 위와 같은 오류가 발생하게 됩니다.
2. 우리가 알고 있는 극한값을 무지성으로 대입하지 말자.
이건 위와 연결되는 내용입니다.
이것은 너무도 유명해서 다들 외우고 쓸 겁니다. 그리고 우리는 테일러를 좋든 싫든 조금은 맛보고 문제를 풀어봤죠.
그래서 위의 식이 포함된 식에서 우리는 종종
를 별 생각 없이 대입하게 됩니다.
그런데 이게 대부분의 경우 옳지만 항상 옳지는 않죠. 예를 들자면 아까 제가 답해준 글에서의 문제가 있겠네요.
여기서 tan x를 x로 단순 치환하면 위아래를 x로 나눠서 (1-1)/x^2로 바꿀 수 있겠네요. 그런데 이렇게 풀면 분자 0, 분모 0인데 더 이상 어떻게 바꿀 수도 없습니다. 잘못된 풀이이죠.
저 식은 사실 정규 교육과정 내에서 어떻게 풀긴 상당히 까다롭습니다. 0/0꼴이므로 로피탈을 반복 적용해서 풀던가, 아니면 테일러 급수의 3차항까지 근사해서 1/3이라는 답이 나옵니다.
질문하신 분은
까지 변형한 뒤 위아래를 x로 약분했죠. 여기서 문제가 생깁니다.
2tan x/2는 단순히 근사하면 x가 되지만 이걸 x로 취급해서 분자를 x로 묶어도 된다는 것은 아닙니다. 이건 위에서 이야기했던 특정 항만 먼저 수렴시키면 안된다는 것에 어긋나는 거죠.
이 식을 로피탈, 테일러 급수 없이 푸는 방법은 다음과 같습니다. 이거 말고도 다른 풀이가 있을 수 있지만 전 모르겠네요...
상당히 접근법이 어렵습니다... 네.
그래서 이 문제는 테일러 급수 3차근사식을 통한 접근을 추천드립니다. 로피탈도 사실 3번이나 써야 해서 상당히 더럽거든요.
여기까지 생각나는 대로 끄적여봤네요.
사실 저는 반쯤 무지성으로 테일러 급수를 대입해서 푸는 편입니다. 분모 분자 차수 비교해서 거기에 맞는 수준까지 대입하는 방식으로요. 물론 테일러 급수 이용하는게 더 복잡한 경우도 많고 해서 일반적인 풀이 기법도 연습하지많요.
조금 길어졌네요. 부족한 글 봐주셔서 감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
저는못난사람인가봐요
-
새터 가서 잘 낄 수 있겠죠 ㅜ
-
과1사1 뭐 10
과탐 하나 사탐하나 하고 싶은 현역인데 사탐은 사문 할것 같고 과탐 생명이랑 지구...
-
나쁘게만살아왔어요
-
국어 5등급 노베이스인데 매삼비, 자이 비문학 병행하면서 강기본(독서/문학/고전),...
-
커리 짜고 있는데 한완수랑 심특 같이 보면 좀 볼륨이 너무 클려나요 올수 미적 21...
-
외대경영 잡히면 쓰려했는데 진학사가 너무 짜게주는지는 몰라도 2칸 뜨던데 ㅋㅋㅋㅋㅋ...
-
예를 들어 군대가 4월 전역이면 3월에 입학이 불가능하잖아요 이럴땐 어떻게 되나요?
-
진짬뽕+참치삼김 어떰
-
약대 라인에 의대증원 영향이 있을까요?ㅜㅜ 작년보다 충원 더 돌 가능성 있나요?
-
ㄹㅇ
-
단국대 컴공/소프트웨어 vs 광운대 컴공/소프트웨어 1
진학사보면 광운대가 그냥 단국대보다 훨씬더 입결 높은거같은데 둘중 하나면...
-
9월에 43525맞고 못보겠다 싶어서 수학 유기하고 국영탐만 ㅈㄴ팜 수학 백분위...
-
동국은 기독교집안이라 안쓸거같은데 어느정도됨?
-
확통 사탐 공대 1
확통이랑 사탐 선택하고 갈수있는 공대 어디 있을까요? 지거국은 다 미적이랑 과탐인가요? ㅜㅜ
-
이건 솔직히 반대인듯 오히려 기대 안하고 있어야 진짜 이루어지더라 ㅋㅋㅋㅋ
-
일단 경제 부르고 보는 느낌.. 사탐런을 한다->과탐스러운 계산과목이니 경제 표점이...
-
레어 질문 2
https://orbi.kr/00014976465 여기 사진과 같이 '거래 준비...
-
원서철에 요즘 건대가 뜬다길래 건대 공대의 불편한 진실 2
건대공대 다니는데 건대 뱃지를 안달고 있어 밑에 글에 분탕러라고 생각하실지 몰라도...
-
수능 성적이 나왔는데 높공은 무리고 적당한 공대를 들어갈 수 있는 성적이...
-
554->444됨
-
무휴학 삼수 3
현역 34225>재수42222 6,9평 지구과학 제외 모두 2초반이었어서 중앙대보다...
-
쓸거갘
-
공과대학교 예비3번인데 붙을 가능성 있을까오ㅜㅜ
-
맞89 4
-
고속성장 0
인서울은 택도 없고 부경대, 경상대 라인으로 볼 것 같은데 이정도 수준의 대학이면...
-
내청코재밌다 4
오늘 1기만 다 볼까
-
맞팔구 8
네
-
사람이죽으면어떻게될까요 사람의의식은어떻게될까요 죽어본사람이알려주면좋을텐데요 아쉽게도죽으면말을못해요
-
23등/79명인데 35명 뽑음.
-
현장에서 너무 튕겨서 언매 독서론 다 풀었는데 9시 10분이 넘어가길래 읽는거...
-
6모 수학을 70점 맞고 7월달 즈음부터 9모를 쓰레기같이 또 못보면 서울대가...
-
맞팔구 2
ㅇ
-
강원의 4칸 2등 / 코핌 기준 3개 다 컷보다 환산점수 높아요
-
수만휘식 행복회로인거 알지만 그래도 이거 말고 믿을게 없잖아 ㅋㅋㅋㅋ
-
집에서 거리는 둘 다 비슷하고 원래는 산업공을 가려했는데 수학을 조져서... 이 둘...
-
아직 ㄹㅇ 어리니까 죄책감 가지지말고 하셈 1년은 진짜 아무것도 아님...
-
팔로워수 조금씩 빠짐 어딜도망가
-
고등학교 입학할 때 꿈 없어서 걍 이과 골랐다가 넘사벽 재능러들과 약간의 회의감에...
-
존1나 하기 싫어지는 마법....
-
대구에 제가 아는 마땅히 갈 만한 곳이 구러 뿐이라 ;<;
-
피들 무서워요 3
어캄
-
중딩 때 부터 메타인지 연습한답시고 내 단점, 못난 점만 찾는 것에만 익숙해서 내가...
-
시발
-
ㅇㅅㅇ?
-
고대 학우 생명 0
이번 고대 학우 생명과학 노예비인데 가능성 있을까요ㅠ
-
건대식 점수 1
656점 아무과나 가능....? 사회과학계열 4칸 어문계열 3칸뜨는데 영어4라서...
-
1등급 뜨면 진짜 착하게 살고 주변인들에게 잘하고 어른을 공경하고 사회에 큰 기여를...
-
냥대식919 0
아직 과탐 가산 안들어온거라는데 낮과라도 갈 수 있나 과탐 99 99임
-
수1 수2 개념 거의 없는 애임. 방학동안 개빡세게 시킬 예정인데 교재로 한완수...
굿굿
이해가 잘 안되는데요, 왜 저 4L에서 2x는 x로 바뀌고 바로 밑에서 3L로 바뀌고 x가 tanx로 바뀌는건가요?
아 오타냈네요... 지적 감사합니다! 수정하겠습니다!
3L은 4L에서 왼쪽 L을 뺀 거에요
평균값 정리로 마지막거 풀수 있어요