[칼럼]논술에서도 쓸일 없는 테일러 급수 증명법 (ver.고등학생)
게시글 주소: https://h.orbi.kr/00066474042
첫 글 쓴지 얼마 안되서 두번째 글을 써보네요... 그리고 이륙 지원해주신 분들 모두 감사합니다!
제목대로 테일러 급수는 사실 논술에서도 써먹을 기회 자체를 거의 주지 않습니다... 하지만 난 극한 문제를 풀 때 테일러 급수 매번 쓰면서 너무 찝찝했다! 하시는 분들은 한번쯤 읽어 보시면 좋을 것 같습니다.
테일러 급수란 초월함수를 다항함수의 합으로 나타내는 방법입니다. 예를 들자면
과 같은 식의 방정식입니다. 이를 전개하면
과 같은 모양이죠. 여기서 우리가 주로 쓰는 부분은 이차항 이상의 부분을 싹 다 잘라내고
로 근사한 부분입니다. x가 0에 가까워질수록 1차항보단 2차항 이상의 부분의 오차가 매우매우매우 작아지기 때문에 이렇게 근사할 수 있는 것입니다.
그럼 지금부터 테일러 급수의 증명을 간단하게 적어 볼게요.
급수로 구하고자 하는 함수를 f라 둘게요. 고등학교 과정에서 배우는 모든 초월함수는 무한히 미분 가능하니 f도 무한히 미분 가능하다고 두죠. 그러면 미적분의 기본정리에 의해
가 성립합니다.
위 식을 부분적분하는데 u=f'(t), v'=1로 두고 적분상수 C=-x로 두면 다음과 같은 전개가 가능해집니다.
v'=1이면 v를 적분하면 t+C가 나오죠. 여기서 적분할 인자는 t이기 때문에 적분상수를 x로 둘 수 있게 됩니다.
자. 이번엔 오른쪽의 (t-x)f''(t)를 다시 부분적분해 보겠습니다.
여기서 f 위의 괄호 안의 숫자는 f를 미분한 횟수를 표현하는 방법 중 하나입니다. '(dot)을 많이 찍다 보면 갯수 세기가 불편하잖아요?
한번 더 전개하면
이를 계속 반복하다 보면 이러한 규칙이 생깁니다.
이렇게 다 더하면
라는 식이 나옵니다.
함수 f는 무한히 미분이 가능한 함수라 가정했고 대부분의 초월함수가 실제로 그 조건을 만족하므로 n은 무한히 커질 수 있겠죠?
이때 어지간한 초월함수라면 n!의 증가량이 분자 부분((t-x)^n f^(n)(t))의 증가량보다 아득히 크기 때문에 마지막 적분 기호는 n이 무한대로 발산한다면 0으로 수렴합니다.
(이 부분은 대학 가서 적분의 평균값 정리를 배워야 자세히 설명이 가능한데... 일단은 이렇게 대충 짚고 넘어갑시다)
따라서 f(x)는 다음과 같이 새롭게 정의할 수 있습니다.
이것이 그 탈 많은 테일러 급수의 유도 과정입니다.
그럼 이제 실제로 자주 쓰는 초월함수 몇 개를 넣어서 한번 계산해 보죠.
먼저 f(x)=e^x입니다.
f'(x)=e^x, f''(x)=e^x, ... 이므로 a=0을 대입해 정리하면
가 됩니다.
이번엔 로그함수 f(x) = ln(1+x)입니다.
f'(x) = 1/(1+x), f''(x) = - 1/(1+x)^2, f'''(x) = 2/(1+x)^3, ... 이므로 a=0을 대입해 정리하면
가 됩니다.
다음은 사인함수, 코사인함수를 해 볼까요?
이번에도 a=0을 대입하고 미분해서 계산해 보면
나머지 삼각함수들은 사인, 코사인처럼 직접 유도되는 것이 아니라 다른 방법으로 유도합니다. 그래서 그 과정 설명은 못 해드리고... 가장 자주 쓰이는 탄젠트의 식만 짧게 보여드리겠습니다.
네... 이 친구의 계수는 얼핏 보면 불규칙해 보입니다. 이는 나중에 베르누이 수열이라는 걸 배운 뒤에 알아보시는 걸로...
다른 초월함수들은 고등학교 과정에선 거의 안 배우죠? 그러니 초월함수 탐색은 여기까지 하겠습니다. 수식 넣기 힘들어요
마지막으로 테일러 급수는 대체 어디까지 근사해서 써야 하느냐! 에 관한 내용을 조금이나마 적겠습니다.
대부분의 극한 문제에서는 분모 분자가 같은 차수가 되도록 문제를 만듭니다. 이러한 경우에는 보통 1차항(코사인의 경우는 2차항)까지만 근사하면 답이 나옵니다.
하지만 간혹가다 분자에는 사인 1개 x 1개나 탄젠트 1개 x 1개 줘 놓고는 분모에선 3차항을 준다던가... 하는 경우가 있습니다.
뭐 이런식으로 말이죠. 이때는 분모와 차수가 같아지는 차수까지 근사를 해 주셔야 합니다. 가령 위의 식에서는 사인을 3차까지 근사해서 답은 1/6이 나옵니다.
여기까지 테일러 급수의 증명과 활용시 주의점에 대해 부족하게나마 적어 봤습니다. 이걸 보고 수학에 흥미가 생기신다면 좋겠네요... 긴 글 읽어주셔서 감사합니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
국어 주간지 수학 실모 탐구 실모 하고 나면 하루 뚝딱인데ㅋㅋㅋㅋ
-
얼마나 아름다운가. . 분분한 22번. .
-
https://orbi.kr/00069822832#c_69822849
-
대학 잘 갔으려나 ㄹㅇ 개웃긴 호감캐 갤주였는데..
-
애니프사단 집합 18
-
국물있는걸로
-
조의금은 여기에
-
질문해주세요 17
뭐든지 답변해드립니다 선넘는것도 가능해요
-
애니프사단 된 기념으로,,,
-
진짜모름 뭔가 의도가있나
-
현강 내용이라 다 오픈하기는 좀 어렵겠지만, 가장 일반적이면서도 중요한 내용은 일부...
-
질문받는다 18
그래. 공부빼고 다 받는다.
-
질문해 주세요 14
싫음 말어
-
수능땐 더잘할수있겠지
-
수능 5일 남았는데 내일 팀사진 찍어야된다고 잠시 들릴 수 있겠냐고 하루전에...
-
영어 삽입 유형은 간단합니다. 1. 단절 찾기 2. 응집성의 장치 찾기 3. 구조...
-
본가가 확실히 편하긴 하네요 ㅋㅋ
-
44모 시그모 벅벅하고 다시 9모 보니까 1컷 50인게 납득이 가려고 그럼 크아ㅏㅏ아악 머리가
-
적중예감 12 13 사만다파이널 1회차까지 세개연속 50점이면 사문 경지에 오른거 맞지 ㅇㅇ?
-
힘내고싶다 3
힘내자 힘내자
-
질문해주세요 14
답변하고 자러감
-
칸트가 사형이외에 다른형벌도 부여할수있다 이거맞다는데 맞는건가요??
-
수능 수학 베이스로 어케안되나
-
안되나...? 탐구1과목이랑 2과목 사이 2분정도 쉬는시간에 1과목 가채점표...
-
각자가 생각하는 장점을 써주세요
-
D-5라고? 0
뭐지
-
후쿠토미츠키후쿠토미츠키후쿠토미츠키후쿠토미츠키후쿠토미츠키후쿠토미츠키후쿠토미츠키후쿠토미츠...
-
대부분 사설이 더 낮다는건가요?
-
뒤통수때릴것같음..
-
질문해드려요 63
질문해드림
-
나는 그와 그 분식집을 안 간 것은 아닌 게 아니다. 잊음을 논함 메타로다가
-
히키생활 7년째 드디어,,,
-
언제부터 국어 1컷 90점 초반대가 물이라고 생각된걸까 8
분명 가나형 시절에 국어 1컷 90 초반대면 변별력 갖췄다고 평가 받았고 모평에서...
-
그런놈이 여길 왜 다시 기어들어 와?
-
나도 신촌 대학 다녀볼래
-
2028수능보고싶어지네 28살에 대학가도 괜찮을까요?
-
답개수 평가원이 작년부터 깼다는거 이제 알아서 고민임 원래 그냥 젤 적은거 무지성으로 밀었는데
-
음음 9평처럼 내주라
-
내년 6월에 재수생 태그달고 글쓸거야..
-
ㅇㅇ
-
수능 예상 5
22화작 22급 기술+경제 6평급 가나지문 작수급 문학 화작1컷 몇임?
-
미칠거 같다
-
지문 평가원 : 1문단 내지는 2문단에서 하고자하는 말 분명하게 캐치하고 그거...
-
경제 지문 0
투자 모형을 이용해 분석한 우주 자원 개발 사업 작수 4-7 생각하면 전혀 불가능한 수 아님
-
등급만 보이는데 어캄
-
아닌가
-
자라. 0
넵!
-
When im in fallin with love~...
-
곧 조정이 온다 4
폭락이 온다 슨피 4800을 깰것.
-
미적 답지 있으신 분 계신가요…?
테일러씨는 참 똑똑하구나
한무 부분적분으로 테일러급수 느낌있게 증명하기 ㄷㄷ
멋있네요
전 개인적으론 이것보단 미분을 이용한 증명이 더 멋진데... 엡실론 델타를 여기서 설명할 수는 없으니 ㅠ
이것도 올려주신다면 재밌게 읽어보겠습니다 ㅎㅎ,,
이건 차마 설명을 못하겠네요... 너무 풀어쓰기가 힘들어유...
예전에 저걸 통해서 오일러 등식 도출할때 참 수학 재미있다고 생각했었는데...
좋은글 감사합니다