삼각함수 인사이트
게시글 주소: https://h.orbi.kr/00067332776
쓸만한 삼각함수 인식 방법 하나를 알려드리겠습니다.
앞으로 삼각함수는 이렇게 인식하세요.
문제입니다. (출처: 2023 고2 12월 모의고사)
결국 저 코사인 값이
이 사이 값을 가져야겠죠.
그럼 우선 코사인 함수를 그립니다.
cos(3x+b) 말고 cos x요.
여기에다가 아래 상수함수 두 개도 추가해줄게요.
x값은 "pi/2 부터 a까지" 바뀝니다.
그러면 3x+b는 "3pi/2 +b부터 3a+b까지" 변화합니다.
이때 x의 변화가 아니라 3x+b의 변화에 집중할 겁니다.
이렇게 되는거죠.
b와 a 값이 모두 나올겁니다.
정리해보면,
y=cos(3x+b) 를 그린 채로 x값을 변화시키는 게 아니라,
y=cos t를 그리고, t자리를 3x+b의 변화로 읽어내는 겁니다.
비유를 하자면,
이 그림처럼 'x축' 대신 '(3x+b)축' 으로 바뀐 셈입니다.
3x+b 전체를 하나의 문자로 인식하는거죠.
그 덕에 함수가 y=cos(3x+b)에서 y=cos x로 간단해지는 것이구요.
조금 더 인사이트가 있는 분이라면,
이건 삼각함수 뿐만 아니라 모든 합성함수에 해당되는 얘기라는 걸 알아채실 겁니다.
이 과정을 한 번 더 시각화 한 것이 n축이죠.
다음과 같이 삼각함수에 이차함수가 합성되어 있으면
n축을 쓰든 뭘 하든 대부분 합성함수로 잘 인식을 합니다.
그런데 이렇게 일차함수가 들어가있을 땐 합성함수로 못 보고 당황하는 분들도 있더라구요.
이를 꼭 평행이동으로만 읽어낼 필요는 없습니다. 얘도 근본적으론 합성된 거에요.
삼각함수의 이런 인식에 대해 더 알고 싶은 분은
제가 예전에 썼던 아래 글을 참고해보세요.
(제목 누르면 해당 칼럼으로 넘어갑니다.)
이번 글은 여기까지입니다.
다음에도 좋은 글로 찾아뵙겠습니다.
#무민
0 XDK (+21,010)
-
10,000
-
10
-
10,000
-
1,000
-
슬슬 자러갑니다
-
예비 고3입니다! 현우진이 뉴런 들어도 되는지 판단하는 기준 알려준거에서 14번...
-
한라산 3병에서 이렇게 ㅈ만하게 줄다니..
-
1등급 될까요??
-
개쫄린다 전원생존 제발
-
며칠 전에 재수를 결심하게 된 그냥 아는 사람~
-
하는 애들은 그냥 전전 가셨으면 그냥 그런 사례들이 너무 많음 시간아깝
-
인생 존나 어렵다
-
궁금합니다
-
지분노무네니토이카케타~
-
선착5 23
만덕
-
오늘 기말 끝났는데 할 게 없음뇨
-
아버지께서 술먹고 가정폭력한단 친구도있고 아버지 암걸리셨다는 친구도있고 엄마...
-
다음주: 여행 다다음주부터: 공부
-
컨설팅질문 2
강대다녔어서 강대 컨설팅당연히 받는데, 추가로 더 받는 것이 좋을까요..?
-
예비 4번 3명 뽑고 작년 3번 재작년 2번까지 돌았음
-
됐다. 15
-
찾아보니까 이번달도 활동하고 있었네ㅋㅋ
-
이런분 있음? 10
지인분들 친구들 등등 ”이거 너한테만 얘기하는건데~“ 이런 걸 꽤 많이 들어서 그런...
-
내가 문젠가...
-
정신 차리게 하는 방법 있을까요 09라 아직 희망 있어 보이는데 자포자기상태임......
-
한완수로 해볼까 4
가끔씩 인강 필요한건 동생패스 쓰고
-
실버1에서 벽을 느껴버린 것이야..
-
오ㅗ노어모모노노노
-
생2런 0
아마 올해 약대 걸고 반수할거같은데 화1 50 생1 47인데 화1 -> 생2? or...
-
미지근한 어느 날에 나시계는 흐르고 난 그저 끌려가네문득 평범한 삶 싫증이...
-
하 자야지 6
한결 방송 왤케 일찍 껐어
-
올해는 우주 컨셉인듯
-
오르비 눈 보면 감사원이 떠오르고 감사원을 보면 오르비가 연상되는
-
어디가 나을까
-
겹지인 많네 0
친구 썸녀가 후임 친구 선임 친구가 내 친구 지방이라 그런가 좁네
-
하루종일 했는데 27
1등좀...
-
작년 올해 둘 다 숙대 경희 외대 인논 응시했음 숙대는 작년이나 올해나 거의...
-
현실에서도기만이넘쳐나
-
수능에사도 대학와서도 계산때문에 깎이는 점수가 너무큰데.. 차근차근풀어도 차근차근실수함
-
OK COMPUTER는 명반입니다
-
상상이상으로
-
순공 몇시간 정도가 적절할까요? 목표 등급은 모고 평균 2등급입니다.
-
ㅇㅈ 10
는 팔로워 천찍어서 기분좋아서 올려봄
-
들어보신분있나요... ..
-
기말고사 잘봐도 A0는 힘들겟죠 수학 거의다맞고 물리 한개틀리고 씨언어...
-
아무튼 간에 11
저거 ㄹㅇ 상대 쪽에서 마음 있는 거 맞나요 동생놈 지금 신나서 방방뛰는데...
-
입결 어디에서 형성될 것 같음?
-
심찬우 잡도해 0
예비 고3 국어 3등급 뜨는 노벤데 잡도해 부터 할까요?
-
본인 99.0 99.5 99.9까지 찍어봄 최종으로는 중학교 전교 2등
-
누누 정글합니다 골드3이고 누누 27게임 승률74퍼 평점 6.26:1 찍혀요...
-
저 재수해요 삼수해요 사수해요.. 이러면 좀 에???!!??!! n수???!!!!!...
-
질문받아요 33
선넘질받도오케이
-
얼굴 못 본 지 1년도 더 넘은 애가 갑자기 이틀에 한 번씩 꼬박꼬박 카톡하는 건...
본문애 있는 문제의 답은 41입니다
답이 안 나와서 계속 풀어봤네요 ㅋㅋ 답은 14입니다!
와 이런 오타를 ㅋㅋㅋㅋㅋ
14 맞습니다 ㅋㅋㅋㅋㅋ
속이 뻥..
n축으로 인식해도 되고,
본문처럼 x축 대신 삼각함수 축을 사용해도 되죠.
그런데 증가와 감소를 반복하는 함수의 경우에는 전자 방식이 낫습니다.
후자처럼 인식해봤자 결국 n축과 동일해지기도 하구요.
와..ㅁㅊ
장재원 단위원도 저런 느낌 ㅇㅇ
잘하는 분들은 많이들 이렇게 보시더라구요
ㅆㅅㅌㅊ입니다..
이게 ㄹㅇ 맞음뇨
예전부터 느끼는 거지만
교단에 뜻이 없다면 아까울 정도의 설명력이십니다
[읽기 전]
어차피 y=cos(x)를 확대, 축소하고 평행이동한 그래프이니 본질적으로 y=cos(x)의 그래프와 같다.
만약 주어진 구간의 길이가 너무 크면 실수 전체의 집합에서 f(x)는 최댓값 2, 최솟값 -2를 갖는 상황이니 모순이 발생한다. a가 적당히 ㅠ/2에 가까운 값일 것!
함수 f(x)가 함숫값 1, -루트3을 갖는 상황은 함수 cos(x)가 함숫값 1/2, -루트(3)/2을 갖는 상황과 본질적으로 일치한다.
따라서 방정식 cos(x)=1/2과 방정식 cos(x)=-루트(3)/2의 실근을 조사해보자.
두 가지 경우의 수가 발생한다. 하나는 주어진 구간이 구간 [0, 2ㅠ]에서 정의된 함수 y=cos(x) 입장에서 구간 [ㅠ/3, ㅠ-ㅠ/6]에 대응되는 것이고 다른 하나는 구간 [ㅠ+ㅠ/6, 2ㅠ-ㅠ/3]에 대응되는 것이다.
따라서 x=ㅠ/2일 때의 함수 f(x)를 바라보는 것이 y=ㅠ/3 or y=ㅠ+ㅠ/6일 때의 함수 2cos(y)를 바라보는 것이라 생각하고 계산해주면 후자일 때는 상황을 만족하는 ㅠ 이하의 음이 아닌 실수 b값이 존재하지 않고 전자일 때 b=5ㅠ/6로 결정된다.
이에 따라 x=a일 때 함수 f(x)가 y=ㅠ-ㅠ/6일 때 함수 2cos(y)가 위치해야할 곳이 되는 셈이므로 a=2ㅠ/3
따라서 정답은 5ㅠ^2/9에서 14
[읽은 후]
삼차함수에 일차함수가 합성된 것으로 바라보자는 것~~ 정확히 일치해서 다행이네요
막 몇배 확대축소 평행이동 대칭이동 쌩쇼하기보다 이게 훨씬 편함 합성관점이..
오
무민님 혹시 도형 관련 칼럼도 써주실 수 있을까요...? 뭔가 일관된 도형풀이 체계를 잡으려고 하는데 어렵네요ㅜㅜ
항상 도움 많이 받고 있어요 감사합니다
도형도 써보겠습니다 ㅎㅎ
거리곱 관련 칼럼도 가능하신가영