[칼럼] 올해 평가원이 만지작거리고 있을 패
게시글 주소: https://h.orbi.kr/00069001994
올해 평가원이 만지작거리고 있을 패 - 김지헌T.pdf
김지헌 수학 핏 모의고사 (지헌모) 2025 판매중입니다!!
아래에 칼럼 세 줄 요약 있습니다!
안녕하세요. 올해 오르비북스에서 수학 실전모의고사를 출판하게 된 김지헌입니다.
이번 칼럼 주제는 ‘올해 평가원이 만지작거리고 있을 패’입니다.
사실 이 주제는 제가 3회분의 문제를 출제하면서 가장 많이 고민했던 주제입니다.
평가원이 올해 어떠한 소재를 어떻게 문제에 녹여내어 학생들을 변별하려 할까,
그리고 그러한 경우의 수 중 학생들이 취약한 부분을 대비시키기 위해 난 어떤 문제를 낼 수 있을까.
이번에 문제를 출제하며 나름의 해답을 찾아 이번 칼럼에서 간략하게 소개하려 합니다.
본 칼럼 이외에 추가로 공부해보고 싶은 분들은 배포한 자료를 꼼꼼히 읽어보구, 질문 사항은 댓글로 남겨주세요!
우선 작년 수능에서 가장 난이도가 높았던 22번 문제를 소개하며 칼럼을 시작해보겠습니다.
여러분에게 배포한 자료 1페이지에 22번의 문제가 있으며, 2에서 3페이지에 해설이 있습니다.
해설을 읽고 오신 분, 혹은 충분히 이 문제를 해석해보신 분들이 아래 내용을 읽길 바랍니다.
우선, 박스안의 조건에서 ‘않는다.’를 해석하기 위해 명제의 대우가 참임을 사용하였습니다.
또한, 홀수와 짝수에서 적어도 한 실근을 가짐을 확인하기 위해 귀류법을 사용하였습니다.
이때의 홀수와 짝수가 연속된 정수임을 확인하기 위해 귀류법을 한번 더 사용하였습니다.
나머지 한 실근이 어느 한 실근과의 차이가 1 이하임을 확인하기 위해서도 귀류법을 사용하였습니다.
마지막으로 세 실근 중 중앙값이 0 임을 확인하기 위해서도 귀류법을 사용하였습니다.
이렇듯 이 문제는 어떤 명제가 참임을 보이는 과정에서 고1에 사용되었던 대우증명법과 귀류법을
상당부분 많이 활용한 문제입니다.
수능의 간접 출제 범위인 고1 내용이 이렇듯 많이 나온 것은 우연한 결과가 아닙니다.
평가원은 수능 뿐만 아니라 매년 고2를 대상으로 국가수준 학업성취도평가를 하며,
이때 수능은 9등급제로 학생들의 성적을 나누지만, 학업성취도평가는 4수준제로 학생들의 성적을 나눕니다.
(이때 4수준이 1수준에 비해 개념을 잘 이해한 학생들입니다.)
2020학년도 국가수준 학업성취도 평가의 3번 문항을 봅시다.
이는 배포한 자료 4페이지에 있습니다.
명제 p가 참이므로 모든 학생이 비긴 판이 있습니다.
이때 세 번째 판은 C가 참가하지 않았고, 두 번째 판에서는 승패가 결정났으므로
모든 학생이 비긴 판은 첫 번째 판입니다.
한편 명제 q 또한 참이므로, 어떤 학생은 가위, 바위, 보를 모두 사용하였습니다.
이때 C는 세 번째 판에 참가하지 않았으며, A는 첫 번째판과 두 번째 판에서 주먹을 사용하였으므로
명제 q가 참이 되도록 하는 학생은 B입니다.
따라서 (가)와 (나)는 모두 보에 해당함을 알 수 있습니다.
이 문항을 평가원에서는 변별력이 떨어진다 분석하였습니다.
수능으로 따졌을 때 대략 3등급부터 7등급까지 정답률에서 큰 차이가 없을 문제라는 의미입니다.
반대로 말해 평가원은 명제를 활용한 문제는 난이도를 조금만 높여도 상위권을 변별할 수 있는
문제가 된다는 것을 잘 알고 있습니다.
명제와 관련된 개념은 여러분에게 베포한 자료의 5페이지부터 10페이지까지 잘 서술해두었으니
공부를 해두길 바랍니다.
한편, 2020학년도 국가수준 학업성취도 평가의 5번 문항에서도 이러한 사례를 관찰할 수 있습니다.
(가)는 함수가 아니며, (나)는 상수함수이고, (다)는 일대일함수이므로 정답은 4번임을 확인할 수 있습니다.
한편 이 문제는 오답인 5번 선지를 고른 학생의 비율이 상당히 높은 문제였습니다.
수능으로 따졌을 때 3등급부터 9등급까지 많은 학생들이 동일한 오답을 고른 문제였습니다.
이는 평가원이 함수의 정의를 활용한 문제 또한 난이도를 조금만 높여도 상위권을 변별할 수 있는
문제가 된다는 것을 잘 알고 있음을 의미합니다.
함수와 관련된 개념은 여러분에게 배포한 자료의 12페이지부터 16페이지까지 잘 서술해두었으니
공부를 해두길 바랍니다.
마지막으로 명제의 개념을 활용하였을 때 나올 수 있는 난이도가 높은 문제와
함수의 개념을 활용하였을 때 나올 수 있는 난이도가 높은 문제,
이렇게 두 자작문제를 첨부하였습니다.
두 문제 모두 메인에 갔던 자작 문제이니, 퀄리티는 괜찮을거에요!
(https://orbi.kr/00068554202 / https://orbi.kr/00043683841)
풀어보고 궁금한 점이 있다면 댓글 남겨주세요.
세 줄 요약 )
1. 평가원은 국가수준 학업성취도 평가를 통해
학생들이 명제 또는 함수의 정의를 활용한 문제를 낼 때 조금만 난이도를 높여도 학생들이 잘 변별됨을 알고 있다.
2. 작년 수능 22번 문제가 '명제' 파트에서 어렵게 냈으니 올해는 '함수의 정의'를 낼 수 도 있다.
3. 배포한 자료에서 '명제' 파트와 '함수의 정의' 파트 자작 예시 문제 올려뒀습니다!
여러분이 수능의 신유형을 대비할 때 도움이 되길 바라며 이만 칼럼을 마무리하겠습니다.
좋아요 하나 부탁드려요! 감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅇㄱ ㅈㅉㅇㅇ?
-
고옥! 고옥!
-
16프로 가자!!!
-
그정도 아님 ㄹㅇ로
-
닥전
-
지향점도 없고..
-
어그로 죄송합니다. 26수능 응시하게된 재수생입니다.(지1은 고정) 2년전에...
-
하늬하늬 2
한의대
-
진짜 ㅈ빠지게 했는데도 해야함? 내신충임
-
이번 수능 8월부터 시작해서 화작96 미적81 영어3 물1 45 화1 38...
-
닭볶음탕 3
에 발작하는 사람이 있대요
-
통합변푠지 분리변푠지 그런 건 아직 발표 안 한 거죠? 과탐 가산점이나 미적, 기하...
-
아이브 레이는 모르겠다
-
문과입니다 대략 어느 정도 갈 수 있을까요 ㅠㅠ
-
국어 22독서 24문학 24선택 수학 20번 격자점 문제 (답:776) 21번...
-
그게 나야 바 둠바 두비두밥~ ^^
-
의대 쓰고 3
면접없는 의대면 1월에 걍 군대가도 괜춘?
-
다니게될수도 있는 학굔데 산책삼아 다녀올까용?
-
언매 인강 ㅊㅊ 2
메가 언매 인강 누구 들어야함??
-
고속에 뜨는 등급 정도가 실채 등급이랑 비슷한가요 보통? 아니면 더 내려가나요...
-
재수 예정인 고3입니다 학교에서 다음주부터 일주일 AI 특강, 미용특강 일주일...
-
노엘콘은 겨우 취소표로 구했다만 이번엔 존나 빡셀 듯 에휴...
-
어디서 들었는데 부피 안곱하고도 할 수 있다는데 그런게있나요?
-
놀이터에서 음란행위는 25
왜하는거냐;; 안보일줄 알고 하는건가 다보이는데
-
국숭세단 중 한 곳 재학 중이었고, 6월에 공부 시작해서 가채점 기준으로...
-
82 92 1 50 45 인데 걸어놔서 세장다 스나로 쓸건데 어디 써야될까요..
-
투표해주세요유ㅠㅠㅠ
-
2027 수능은 헬파티 확정일듯 ㄹㅇ
-
작년기출 뽑아가는게 좋을까요 시험전에 읽게.. 풀기는 다 풀어봤는데
-
술한잔했습니다 3
오랜만에마시니까어질어질하네요
-
연대갈까 6
고3때는 연대가 로망이었는데 흠..
-
텔그 전적대 췤 4
아하!
-
크럭스 말대로면 미2 92는 표점 136 or 135임?? 6
진학사는 지금 138로 보고 있는데 수학 표점 1점 떨어지면 한양대식 8점 떨어져서...
-
과탐응 하
-
배달비 좀 깎아 주면 안 되겠니
-
지금 대성 렉 저만 걸리나요? 자꾸 버벅임 ㅜ
-
건대 스나간다 0
실채점 때 최소 4칸이라도 떠라
-
22 불수능 23 적절 24 불수능 25 적절 26 ?? 27 ??
-
이름이 비슷한 2022 MMA 민지 사진 보고 가세요
-
이과 문과 다 학과 상관없이 대학만 보면 어디까지 가능할까요?
-
탐구 노베라고 생각했을때 2년 정도 공부하고 나서,, 사탐으로 한의대가기 vs...
-
그러면 의학적 근거를 바탕으로 청소년 음주가 특히 더 해롭기 때문에 금지시키는...
-
아무리생각해도 내가 9번을 틀렸을리가없는거임 그래서 다시채점하면서 보니까 가채점표에...
-
개념 깔짝아는 정도인데 어떤 분이 더 낫나요? 올해는 대성만 샀어서 형수쌤 개념강의...
-
파 3
타임어택미쳤네
-
주변에 죄다 단란주점임 <-- JOAT 밤에 걸어다닐 때마다 아재들의 노랫소리가...
-
수송, 화생방 등등 괜찮은 직별 많아요ㅇㅇ
-
6% 못넘길것 같네요
-
다방, 단란주점, 소주방 이런 거밖에 없어서 광광 울었다 성인 되면 저런 데 가...
좋은 글 감사합니다! 고1수학 극혐이긴 하지만 참고 공부해봐야겠네요..
혹시 핏 모의고사에도 저런 류의 문제가 실려 있을까요?
함수의 정의를 활용한 예시 문제의 경우, 모의고사에 집어넣기에는 실험적인 문제라 판단했습니다.
하지만 명제를 활용한 예시 문제의 경우, 본 모의고사의 쿠키 문제로 해설지 제일 끝에 첨부되어있습니다.
본 모의고사의 15번, 22번 문항대는 명제를 활용한 예시 문제와 같이 비교적 덜 실험적인 문항들이 많습니다. 학생들이 배워갈 점이 있지만, 동시에 실전성도 대비시키고 싶었기 때문입니다.
자세한 답변 감사합니다! 모의고사 꼭 구매하도록 하겠습니다
감사합니다 ㅎㅎ