2025 9모 수학 손해설 (전과목)
게시글 주소: https://h.orbi.kr/00069209191
2025 9월 모평 수학 풀이.pdf
[공통]
1~8번 : 그냥저냥 평범한 2, 3점짜리 문제들
9번 : 4점짜리에 단순 계산 문제..?
10번 : 도형 그려놓고 사인법칙 슥삭슥삭 해주면 되는 문제. 그래도 이건 나름 4점짜리다운 문제였다.
11번 : 아무리 그래도 4점짜리인데 너무 기초적인거 물어보는거 아닌가
12번 : 나열할게 많아서 조금 까다로운 문제인 것 같은데 정답률이 꽤 높다. 미적분 선택자 기준으로 정답률 80%나 나올 정도는 아니라고 생각했는데 역시 표본 수준 상승인가
13번 : 13~14번 있는 페이지가 비주얼이 장난 아닌데, 일단 13번은 그래프 그려놓고 보면 y축 대칭이고 적분값 0이어야 되는게 보여서 생긴거에 비해 쉽게 풀 수 있다.
14번 : 본질적으로는 역함수 성질 물어보는 문제였는데, 갑자기 원이 나와서 중상위권 이하의 입장에서는 얼타기 쉬운 문제였을 것 같다.
15번 : 처음 봤을 때 까다로운 적분 퍼즐이라 15번에 있는건가 했는데 풀고 나니까 황당함밖에 안 남았다. 작년 9모 22번과 결이 비슷해보인다.
16~19번 : 3점짜리 문제 모두 평이했다. 19번은 최근에 좀 까다롭게 나오는 경향이 있었지만 이번에는 쉽게 출제되었다.
20번 : 문제 자체는 어렵지 않은데 은근 몇 개 실수로 빼먹기 좋은 문제인 것 같다.
21번 : 문제 풀면서 퀄리티 낮다는 생각은 잘 안 하는 편인데 이 문제는 진짜 별로인 것 같다... 15번은 그래도 수2 개념이라도 많이 쓰였는데 얘는 마지막에 f'(3) 구하는거 빼면 그냥 고1 수학 아닌가. 솔직히 낼 게 없어서 낸 문제인가 하는 생각도 들었음
22번 : a1부터 a5까지만 고려하면 되는데도 순방향이나 역방향 둘 중 하나만 사용해서 풀려고 하면 생각보다 경우의 수가 많이 나와서 복잡하고 실수 가능성도 높다. 순방향이랑 역방향을 절충해서 푸는 것이 최적화된 풀이인듯
[확률과 통계]
23~27번 : 어려운 문제가 없다.
28번 : 확통은 역시 케이스 분류가 생명이다. f(4)의 값으로 케이스 분류 해놓으면 그 안에서 f(1), f(2)도 케이스 분류해야 돼서 까다로운 문제이긴 하다.
29번 : 3점짜리로 출제해도 될 만큼 쉬운 문제. 특이한 점은 정답이 상당히 크다
30번 : A가 받은 공을 기준으로 케이스 분류 했다. A가 공을 2개 이하로만 받을 수 있어서 케이스 분류할게 많지 않아보이지만, A가 하얀 공을 받았는지 검은 공을 받았는지, A가 같은 색깔의 공만 2개 받았는지 서로 다른 색깔의 공을 하나씩 받았는지 등 디테일하게 고려해야 할 부분이 있다.
[미적분]
23~27번 : 어려운 문제가 없다. 27번 너무 순한맛이라 당황
28번 : 생긴거에 비해선 그렇게 어렵지 않은 것 같다. 메인은 그래프를 그려서 역함수를 적분할 수 있는가 물어보는 것 같고, 답을 구하는 과정에서 치환적분과 부분적분 개념도 모두 사용하게 된다. 다양한 적분 개념을 물어본다는 점에서 좋은 문제인듯.
29번 : 부분분수 분해를 할 줄 아는가? a(n) = S(n) - S(n-1)이라는 것을 아는가? 크게는 이 두 가지를 물어보는 문제인 것 같다. 말 그대로 이 두 가지만 알면 쉽게 풀 수 있는 문제
30번 : f(x)를 부정적분해서 F(x)를 구하면 되는데, 이 때 생기는 적분상수를 조정해주는게 키 포인트다. 이 과정에서 케이스 분류할게 은근 있고, 그래프 개형 따져줘야 하는 부분도 있어서 꽤 어려운 문제라고 할 수 있다.
[기하]
23~26번 : 어려운 문제가 없다.
27번 : 얘도 그냥 현장이었으면 슥삭슥삭 풀었을 것 같은데 해설로 쓰려니까 어렵다.. 이건 공간도형 특인듯
28번 : 뭔가 서로 수직인 두 원이 만나는 두 점이 N1, N2여서 cos(N1ON2) = 3/5이라는게 뭔 느낌인지는 알겠는데 막상 그리기 힘들어서 좀 버벅댔다. 그림에 표시한 글씨들도 좀 뭉개진 것 같은데 못 알아보겠으면 물어보세요...
29번 : 음 쉽다 쉬워! 미확기 모두 29번은 쉽게 나온듯
30번 : 벡터 분리로 풀려다가 케이스가 9가지나 나와서 포기하고... PQ의 자취를 그려주는게 키포인트인 문제인 것 같다. OE는 사실상 크기, 방향이 모두 정해져 있는 벡터라서 PQ 자취만 정확히 파악하면 된다. 한 삼각형을 기준으로 잡고 그 삼각형의 변을 따라 다른 삼각형을 움직여주면 자취를 얻을 수 있다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
심심하뇨
-
레전드기만좀할게요 18
치킨 먹을거임뇨
-
친구들하고 얘기하다가 이 주제 나왔는데 1. 저출산 여파 보면 모르냐 5년전에...
-
엉엉
-
허니콤보 ㅇㄸ
-
진짜였구나,, 생각해보면 나도 초6때 은근 자랑질이나 자격지심 있었던 듯
-
방학때 열심히 수강해서 꼼꼼히한 공책필기도 남아있지만 듣고 유기한지 좀 되어서...
-
아ㅜ 힘들어죽을거같아여 11
롯데월드 오늘 사람 너무 많았슴….
-
틀딱 특 18
제목 보고 호다닥 달려옴
-
ㅠㅠ걱정되네요
-
다시 본진으로 돌아가보자~
-
다들 얘네 알잖아요 16
전 슈미파였음뇨
-
쟤가 실제로 영재이던, 아니면 단순히 조숙한 아이던 간에 어린 시절은 되돌릴 수...
-
매일 7:30-11:30 국어 공부, 13:00-14:00 영어 공부 고정 메인...
-
난 초딩때... 10
나름 촉망받는 아이였을텐데 왜 지금은 이럴까 하다가도 똘끼가 너무 넘쳤던 거...
-
27살인데 그분은 금요일 티켓 나는 일욜인데 나 공연끝날때쯤 여기로온다는데 거의...
-
내년부턴...진짜 불법이다...
-
과탐 가산은 보통 있는데가 많은데 수학은 미적이나 기하했다고 가산주는데...
-
어그러 ㅈㅅ 수학 미적 69수능 순서로 백분위 97,98,99(공통1틀 미적) 인데...
-
예비 고3인데 개념이 중간에 몇개 빠진거같은 느낌이 들어서 채우고 싶은데 김기현...
-
삼수하시는분들 1
시작하셧나ㅛ 아진짜말어떻게꺼내 하
-
좀 MZ해질 필요가 있겠군
-
잡담태그 잘 달고 안 물어요
-
우우 7
춥다추워
-
1. 대학교는 졸업하는데 취업을 못함 2. Team 재수삼수는 대학교 졸업도 못함...
-
초딩때 쓴 지식인 둘러보면서 몰랐던 저의 영재성을 발견했음 12
비틱질 영재 반말 영재 복돌 영재 샷건 영재 나 은근히 영재였구나
-
만점을 위해선 화2랑 지1중에 어떤과목이 더 공부량이 많나요?
-
애가 참 싹싹하고 바르네 요즘 보기 드문 인재
-
555 456 455 556 어떤게 가장 나은가요? + 표본이 적은곳은 실채점 나오면 늘어날까요?
-
다른건 몰라도 수학 가르쳐주는건 진짜 자신있는데 미적분 기준 9모 만점 수능...
-
어떤 맛인지 몰?루
-
군수생 달린다 3
매개변수 미분 배운다
-
이게맞지 ㅠㅠ 진짜 다행..
-
유튜브 보면 뭐 3.2% 이러는 건 어케 계산래
-
가 궁금합니다 ><
-
초6 왤케귀엽냐 0
자기가 잘못했다고 사과도 하고 진짜 괜찮은놈인듯
-
맞팔 하실분 0
잡담택잘달아요
-
좋아하는 국어쌤 생일이 이번 주 화요일인데 뭐 드리지 ㅊㅊ 좀 담임쌤은 아니고 그냥...
-
뻥임뇨
-
초6좌 찬찬히 살펴보니 뭔가 내 중딩때가 떠오르는데 8
딱 그때 혼자 사상서적쓴다네 이론 토론 나누네 하면서 중2~3이후로 2 3년씩 그릇...
-
존나잘부르심
-
크리스마스는 4
크리스마스 당일이 되기 전까지 설레하면서 기대하는 그 감성이 99프로인 것 같다...
-
중간에어케될지몰라서 교재패스로 한번에 살까말까 고민중인데 참고로 영어에요 다들 어케하시는지 궁금
-
제 애인입니다 6
응원해주세요~
-
옮창되버렸음뇨 6
탈릅각을 봐야겠음뇨
예상 등급컷은 언제 올라오나요?..ㅜㅜ
제가 생각했던거랑 거의 문항별로 일치하네요 특히 12번 14번 얘들을 가르쳐보니까 이런생각이 들던데