[물1 이야기] 물1에서 용수철 단진동이 등장하기 힘든 이유
게시글 주소: https://h.orbi.kr/00069239568
안녕하세요. 쓸데없는 이야기나 하러 왔습니다.
물1의 n제나 각종 모의고사들을 둘러보다 보니 용수철문제가 정말 많이 보입니다. 하지만 어째서인지 평가원은 개정 첫 년도 이후로는 용수철을 그렇게 안 다루고 있는 모습을 보여주고 있습니다. 이에 대한 제 생각을 간단하게 적어보려 합니다.
1. 평가원의 문제 스타일
문제는 일종의 관측현상을 서술하는 것입니다. 문제 상황이 실제 상황과 달라서는 안되니까요. 누군가가 고도의 실험으로 데이터를 가져와서 딴지를 걸면 귀찮거든요.(안 할거 같다고요? 평가원 게시판 가보셈요. 재밌는거 많음요.) 그렇기에 관측에 유리한 상황의 데이터를 제시하여 딴지 걸 상황을 최소화하는 경향이 있습니다. 예를 들어서 '정지'한 상태라거나, 가속도가 0인 상태라거나, 저런 특이점들을 문제로 제시하는 경우가 많다는 겁니다. 물론 가속도가 0인 상황은 관측이 쉬운건 아닙니다만, 물1의 한 단원인 등가속도 운동과 달리 용수철에서의 단진동은 가속도가 계속 변하는 상황이므로 가속도가 0인 상황이 다른 상황에 비해서는 훨씬 특이점이라는 것은 어쩔 수 없으니까요. 한 번 문제를 보도록 하죠.
210620입니다. 용수철 문항도 몇 가지 유형이 존재하는데, 쓰기 귀찮으니 생략하겠습니다. (나), (다), (라) 상황 모두 정지한 상황을 제시해 주고 있습니다. 물체의 운동 상태를 쉽게 '관측'할 수 있는 상태이니까요.
211120입니다. (가)에서 정지한 상태를 주었고, (나)도 풀어보시면 알겠지만 저 상황이 평형점의 상태, 즉 가속도가 0인 상황입니다. 이런식으로 평가원은 몇 번 용수철을 깔짝하다가 후퇴를 해버린 것이죠.
2. 저런식으로 계속 내면 되는거 아니냐?
그럼 솔직히 너무 쉬워집니다. 공식하나 딸깍하면 끝나거든요. 그 공식을 한번 보도록 하겠습니다.
(평형점에서 x만 큼 떨어진 위치에서의 운동에너지)=1/2kA^2-1/2kx^2 (A는 단진동 진폭, x는 평형점으로 부터의 거리) 해당 공식이 성립합니다.
증명을 해보도록하죠.
i) 수평면에서
수평면에서의 상황은 굉장히 쉽습니다. A만큼 늘린 용수철에 질량 m인 물체가 달려있다고 생각하면, 중력 퍼텐셜 에너지의 변화는 0이니 당연히 탄성퍼텐셜 에너지의 변화는 물체의 운동에너지로 가겠죠.
ii) 중력장에서
사실 이것도 i)의 상황에서 mg만큼 운동을 shift를 건 것과 같지만.. 이는 한번 수식으로 증명을 해 보겠습니다.
용수철에 물체를 달았고 처음 위치에서의 중력 퍼텐셜 에너지는 0이라고 하겠습니다. 즉 물체의 역학적 에너지는 0인거죠. 질량은 m 중력가속도는 g, 진폭은 A, 용수철 상수는 k입니다. kA=mg이고 용수철이 A만큼 내려온 상태에서 물체의 운동에너지는 중력터텐셜 손실-증가한 탄성퍼텐셜 이므로 K=mgA-1/2kA^2=1/2kA^2이 됩니다. 이제 x만큼 떨어졌을 때 운동에너지를 구해봅시다. 중력퍼텐셜의 손실은 mgx, 탄성 퍼텐셜의 증가량은 1/2k(A+x)^2-1/2kA^2=kAx+1/2kx^2입니다. 즉 운동에너지 변화량은 1/2kx^2이 되므로
x에서의 운동에너지는 1/2kA^2-1/2kx^2이 성립합니다. 증명 끝 (기울어진 곳에서도 당연히 되겠죠?)
3. 그래서 저걸로 문제 풀림?
평가원 문제는 눈으로 풀립니다. 위의 문제들을 다시 보도록 하죠.
d가 평형점임을 읽었고, 2d가 진폭인 단진동입니다. 즉 x에서의 운동에너지는 2kd^2-1/2kx^2입니다. 운동에너지의 최댓값은 x=0일 때 이겠죠. 즉 2kd^2=2mgd이니 ㄷ은 맞는 선지입니다.
여기서도 0.1만큼 늘어나 있다가, 0.05가 되는 상황에서 평형점 임을 찾았다면, 진폭은 0.05인 운동입니다.
A와 B를 하나의 계로 보면 계의 운동에너지는 1/2 X 200 X (0.05)^2-1/2 X 200 X x^2인데 평형점이므로 x=0입니다.
즉 1/2 X 200 X (0.05)^2이 계의 운동에너지 이고 A의 운동에너지는 이의 2/5만큼이죠. 또한 용수철에 저장된 에너지가 (나)에서 1/2 X 200 X (0.05)^2이니 답은 2/5인겁니다.
4. 마치면서
진폭이 감소하는 형태의 진동인 DHO, FHO를 다룰 순 없고, 평가원이 문제를 내는 특성과 약간의 공부면 용수철문제는 그냥 눈으로 풀리는 기현상이 일어나 버리니.. 평가원은 개정 첫 년도를 이후로 단진동의 형식으로 용수철을 안 다루고 있지 않나 생각이 듭니다. 물론 어디까지나 저의 생각이고 제가 인강 경험이 없는지라 다른 강사가 이미 한 이야기이거나 반대로 말씀하셨을 수 있을테니 비판적으로 보시길 바랍니다. ㅂㅂ 물1 노잼.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
레전드기만좀할게요 18
치킨 먹을거임뇨
-
친구들하고 얘기하다가 이 주제 나왔는데 1. 저출산 여파 보면 모르냐 5년전에...
-
엉엉
-
허니콤보 ㅇㄸ
-
진짜였구나,, 생각해보면 나도 초6때 은근 자랑질이나 자격지심 있었던 듯
-
방학때 열심히 수강해서 꼼꼼히한 공책필기도 남아있지만 듣고 유기한지 좀 되어서...
-
아ㅜ 힘들어죽을거같아여 11
롯데월드 오늘 사람 너무 많았슴….
-
틀딱 특 18
제목 보고 호다닥 달려옴
-
ㅠㅠ걱정되네요
-
다시 본진으로 돌아가보자~
-
다들 얘네 알잖아요 16
전 슈미파였음뇨
-
쟤가 실제로 영재이던, 아니면 단순히 조숙한 아이던 간에 어린 시절은 되돌릴 수...
-
매일 7:30-11:30 국어 공부, 13:00-14:00 영어 공부 고정 메인...
-
난 초딩때... 10
나름 촉망받는 아이였을텐데 왜 지금은 이럴까 하다가도 똘끼가 너무 넘쳤던 거...
-
27살인데 그분은 금요일 티켓 나는 일욜인데 나 공연끝날때쯤 여기로온다는데 거의...
-
내년부턴...진짜 불법이다...
-
과탐 가산은 보통 있는데가 많은데 수학은 미적이나 기하했다고 가산주는데...
-
어그러 ㅈㅅ 수학 미적 69수능 순서로 백분위 97,98,99(공통1틀 미적) 인데...
-
예비 고3인데 개념이 중간에 몇개 빠진거같은 느낌이 들어서 채우고 싶은데 김기현...
-
삼수하시는분들 1
시작하셧나ㅛ 아진짜말어떻게꺼내 하
-
좀 MZ해질 필요가 있겠군
-
잡담태그 잘 달고 안 물어요
-
우우 7
춥다추워
-
1. 대학교는 졸업하는데 취업을 못함 2. Team 재수삼수는 대학교 졸업도 못함...
-
초딩때 쓴 지식인 둘러보면서 몰랐던 저의 영재성을 발견했음 12
비틱질 영재 반말 영재 복돌 영재 샷건 영재 나 은근히 영재였구나
-
만점을 위해선 화2랑 지1중에 어떤과목이 더 공부량이 많나요?
-
애가 참 싹싹하고 바르네 요즘 보기 드문 인재
-
555 456 455 556 어떤게 가장 나은가요? + 표본이 적은곳은 실채점 나오면 늘어날까요?
-
다른건 몰라도 수학 가르쳐주는건 진짜 자신있는데 미적분 기준 9모 만점 수능...
-
어떤 맛인지 몰?루
-
군수생 달린다 3
매개변수 미분 배운다
-
이게맞지 ㅠㅠ 진짜 다행..
-
유튜브 보면 뭐 3.2% 이러는 건 어케 계산래
-
가 궁금합니다 ><
-
초6 왤케귀엽냐 0
자기가 잘못했다고 사과도 하고 진짜 괜찮은놈인듯
-
맞팔 하실분 0
잡담택잘달아요
-
좋아하는 국어쌤 생일이 이번 주 화요일인데 뭐 드리지 ㅊㅊ 좀 담임쌤은 아니고 그냥...
-
뻥임뇨
-
초6좌 찬찬히 살펴보니 뭔가 내 중딩때가 떠오르는데 8
딱 그때 혼자 사상서적쓴다네 이론 토론 나누네 하면서 중2~3이후로 2 3년씩 그릇...
-
존나잘부르심
-
크리스마스는 4
크리스마스 당일이 되기 전까지 설레하면서 기대하는 그 감성이 99프로인 것 같다...
-
중간에어케될지몰라서 교재패스로 한번에 살까말까 고민중인데 참고로 영어에요 다들 어케하시는지 궁금
-
제 애인입니다 6
응원해주세요~
-
옮창되버렸음뇨 6
탈릅각을 봐야겠음뇨
-
경기부엉이<---이놈정상인코스프레했는데 어느날이상한놈인거걸리고닉변했더라
단진동하기