스포) 샤인미설맞이 손풀이+간단한 해설
게시글 주소: https://h.orbi.kr/00069655521
주말엔 쉬는편이라 이제야 봤네요
간단한 리뷰를 하자면 킬러(15번)가 진짜 아름다운 문제였다고 생각
준킬러는 되게 쉽지 않았나 싶네요
1컷 88?(미적분)
f(k) f(-k) 전부 4^x면 곱이 2/9가 나올 수 없겠죠
매일 하던대로 넣고 벅벅 계산으로 마무리
g, h모두 f 최고차를 따라가니 최고차 대충 잡아놓고 무한대극한으로 최고차 계수 구하고,
x->1조건에서 g-h = 2f(x)인걸로 f(x) 식 작성 마무리
구하는것도 2f(4)라고 바꿔 보면 되겠죠
홀짝나눠서 한쪽은 그냥 상수*6, 한쪽은 제곱 시그마 합 공식을 벅벅
접선끼리 평행이동(x로 3만큼) 관계에 있어서 x절편 평균값이 -1이다로 놓고 직선 구해서 다시 함수로 돌아가서 함수 확정해주면 끝
14번 도형치곤 사설에 절여진건지 너무 쉬웠다는 느낌?
각 점이 전부 원점에서 거리가 같아서 원주각-중심각 관계로 Q든 P든 x,y좌표값 비가 코사인 조건에 의해 특정되는거만 발견하면 아주 쉽게 풀리죠
너무 어렵고 아름다운 문제
(나)조건에서 f(f(1)),f(f(2)),f(f(m))이 전부 같고 f(자연수) 값들 중 최소임을 먼저 느껴야되고,
최고차 음수면 계속 값이 작아지니 (나)조건을 만족시킬 수가 없고,
양수일 때는 x = f(1), f(2), f(m)을 지나고 y좌표가 대충 무언가라고 두고 다시 생각해보면,
f(1)이 1보다 크면 f(1)이 f(f(1))보다 반드시 작아지니 모순, f(1)=1
f(1)이 1이니 대충 무언가로 둔 y값도 1
또한 이러면 f’(1)>0인 개형이 되니 f(m)>f(2),
f(m)~f(2) 간격이 1보다 크면 그 사이 어떤 값에서 f(자연수)의 최솟값이 생기므로 안됨, f(m)=f(2)+1, 조건에 따라 f’(1) = 15/2
위에 작성한 식에 2대입해서 f(2) = ~~, f’(1)값으로 연립하며 마무리
(나눠주는 게 가장 깔끔한듯)
홀수인 거에 짜릿하게 반응이 오면 쉽게 풀리죠 (홀수 되는 경우는 구간설정상 t=-3k/2밖에 없다)
열린구간이라 구간경계값이 최대/최소일 수 없음을 느끼고,,
{f(x)}^2이라는 함수의 극대/극소가 최대/최소가 될 수 있다로 두면 어렵진 않게 풀리죠
개수니까 부등호조건에서 n(A3) = 3이겠죠
A짝수, A홀수의 원소개수 특징을 파악하면 A5, A10이 겹치는 원소가 두 개 있어야 한다, 0은 무조건 겹치니 다르게 겹칠 수 있는 두 케이스에서 각각 값 구하고 더해주면 끝
15번이 진짜진짜 어려웠어서 22번은 좀 쉬운 느낌이네요
라이프니츠를 쓸 경우 d?/dt, 저같이 함수로 두면 ?‘(t)를 안 구해도 되는 문제였네요
a2 a5가 같아야되고 케이스 3개나오겠죠
되는 경우 하나밖에 없고 계산벅벅 마무리
0~4까지 함수가 =<x면 된다를 느끼면 나머지는 어렵지 않죠
|x|+t 위 길이니까 그냥 y값 차로 봐도 무방하고 이걸로 식 세워서 적분으로 벅벅
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
글씨만 봐도 수학 고수인게 느껴지는 마법좋아요 0 답글 달기 신고
-
좋아요 0 답글 달기 신고
-
문과goat 나오냐?
-
98 98로 잡긴하던데 메가가 떨어질 가능성 있다고보심??
-
졸업하고 받는 생기부에 미인정안그여잇을라면 12월내내 현체아니면 병결로만...
-
원장연 인증)) 3
-
영어3,4 차이 0
여기서 영어 3 떴어도 급간 차이 없죠?
-
물1 1컷 48= 24 미적 1컷 89 지1 1컷 44= 24 미적 1컷 87 화2...
-
이거 하나에 대학이 달림
-
저 영어 2등급따리라서 전문성이 없어요... 하면서 거절했다 아잉도 B맞았는데 시ㅣㅣㅣㅣㅣㅣ발
-
근데 그 다음해부턴 몰?루ㅋㅋ
-
잘본 사람이 왤케 많지 싶으면 말이 없는 사람들을 생각해보면 상상이상으로 많을꺼임...
-
24 48점이 표점씹혀서 97이었는데 표본 급상승 뭐뇨이
-
의견주심 감사합니다
-
무료로 쓸 수 있게됐는데 재밌는거있나용
-
언매 92 전원 생존 화작 94 전원 생존 미적분 88 전원 생존
-
내년에 물2 치려고 했는데 시대인재 등급컷 ㄹㅇ이면 사탐런 가는게 현명한 선택이려나...
-
기구하다 9
기구
-
다는 적용 안됨 파라오 클레오파트라 이런거 봐도 모르는데 아스완 (도시이름) 보고...
-
없는거같지 부모님쪽 지인도 그렇고 걍 망한케이스가 거의없고 다 앵간히 나왔다는 말이...
-
총 맞았냐?
-
고위 공무원들 많은 충청도 의대 수시합격자들은 웃고있음 남은건 2025 의평원...
-
생윤 윤사 조합 어떰 사문 너무 능지가 딸림 윤사 많이 고엿나
-
기초적인 문해력이 없으면 공부가 안되니
-
얘들아 9모컷 -4점쯤이 수능컷이 될 거란다 ㅎㅎ 지금 맘껏 기뻐해
-
의대생 대폭 증가함?
-
영어 어려웠나 6
기억 속에서 삭제됨
-
아이고 두야 0
허리아파
-
333 5
으헤헤
-
모두가행복한 13
언매1컷91-92 화작1컷93-94 미적 88전원생존 영어6퍼 사문1컷 45 한지 1컷 45
-
ㅅㅂ지랄 ㄴ
-
걍 벽이 다섯개는 느껴짐
-
2분 남겨놓고 마킹하고 가채점해서 답안지 확인도 똑바로 못하고 제출했는데 제발...
-
사탐컷은 없나 4
궁금함뇨
-
가형: 공통수학1,2, 미적분, 대수, 고급수학 나형(절대평가): 공통수학1,2
-
가산점 받는 과탐이냐 사탐이냐
-
최예나콘서트하네 2
ㅎㅎㅎㅎ
-
쌍지 교과서 구경해본 적 없는데 35-43점 베이스인 지리퍼거 출신임
-
그래도 표점을 믿는다
-
ㅈ같구나 마킹실수라면 생전안한 마킹실수를 수능때하는구나 정법표점안락사
-
닉 변 완 료. 1
네.
-
나 흐콰했어 사회가 날 이러케 맏들었어
-
가형 고급대수 고급미적분 고급기하 확률과통계 나형 미적분 기하 확률과통계
-
가채점 그냥 입력 안 하는 사람도 많을까요?
-
꼬리질문 ㅈㄴ당황스럽네;;;
-
궁금함뇨
-
일단 지2는 못버림. 8과탐 중에서 제일 잘맞고 점수화도 잘됨 물2는 고인물...
-
한의대는어디도 불가겠져?ㅠㅠ
-
내년엔 컷 정상화 제발...