쉽고 재밋고 개 유명한 문제 (2)
게시글 주소: https://h.orbi.kr/00070232886
파티에 사람들이 있다.
이 사람들중에 임의의 2명은 악수를 하거나 하지 않았다. (여러번도 알빠 없음)
이때 각 사람마다의 악수 횟수를 모두 더한 값은 짝수임을 보여라.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
좋은아침 13
아침이되니한결 마음이편해요
-
타코야끼 먹을거임
-
뇨 체를 만나고 달라졌음뇨 이제 나도 부드러운 사람임뇨
-
안냥 3
반가웡
-
미적틀 96은 2
백분위 100 가능성 아예 없는 건가.. 9평 100도 백 99 주고.. 이게 뭐야 ㅠㅠ
-
그리고 수학 1등급 이상 정도 되면 걍 수능 버리고 연논만 올인하는게 나을거같음...
-
흠
-
"국잘수망"이면 개추 ㅋㅋ
-
그분 근황 궁금한데 닉네임이 생각안남.. 강x 리뷰글 쓰시던 분이였는데
-
공대=>취업 테크후 40대에 수능판 복귀해서 역대급 저출산 물로켓 현역들 제압하고...
-
이 성적으로 경북대 부산대 문과 하위과 가능하나요??
-
부모님 감사합니다 열심히공부해서 대학갈게요
-
과탐 가산점 0
과탐 택1만 해도 가산점 적용되는 학교 있나요???
-
벌레다처먹을 11
버드기상
-
확통사탐인데 아무래도 수학을 진득하게 파는게 낫겠죠? 실전개념 -> 기출 -> N제...
-
수능 빌런 신고 7
존대 쓰니 잘 안 읽히는 것 같아 명사형어미로 썼습니다ㅠ 이번 수능 영어 때 뒷자리...
-
얼버기 6
오늘도 9시 기상 성공
-
6시간 자도 컨디션따라 정신 훼까닥 하는 편이라 대가리 컨디션 잘 생각해서 공부할거...
-
소름 끼치는 점 3
물리 난이도 23 < 24 < 25 1컷 23 = 24 = 25 (23은 표점...
-
공사 0
반갑습니다 현재 외고 다니는데 갑자기 공군사관학교가 너무 가고 싶습니다 현재...
-
게임 과금할까 했는데 막상 하려니까 돈 아깝다
-
이게 학종 정시보다 더 어려워보임 우리학교 04선배중에 인서울 의대논술6관왕 한...
-
해보고 싶은데
-
다보인다
-
외대 ELLT 가능해보이나요?
-
기상 4일차 4
ㅓㅡ 너무피곤해
-
수능 과탐으로 평가 육군: 물1화1 공군: 생1지1 카투사: 사탐 해병대는 과탐2
-
호우 0
환전 지연 없이 안전한 사이트입니다 각종 이벤트도 진행중이니 가입하시고 즐겨보세요...
-
1. 정말 초6이 맞는가? 나도 내 동생 졸업장으로 8살 어려질수도 있고 엄마...
-
호우 0
환전 지연 없이 안전한 놀이터입니다 . 각종 이벤트도 진행중이니 가입하시고 즐겨보세요
-
https://youtube.com/shorts/GnbKzsQK7ag?si=Nmie4...
-
전형태 문학 올인원 vs 김상훈 문학론 둘중 고민하고있는데 김상훈 문학론은 작년에...
-
ㅛ 바로 옆에 ㅕ가 있어서 해요체 쓸때 자꾸 '~아닌가여?' ㅇㅈㄹ로 애교 부리듯이 자주 써짐...
-
수능 지1 8
45점 백분위 99를 주세요..
-
https://www.mycsat.re.kr/report/index.do...
-
기차지나간당 3
칙칙폭폭
-
성대 글로벌리더 중대 경영 경희대 지리 호텔 외대 경제 경영 정외 어문 시립대 세무...
-
왜죠
-
공부 시작하다보니 서연고, 메디컬 열망이 커져서 ㅜㅜ 운동으로는 어느정도 이룬것도...
-
6시40분만 되면 눈이 떠진다 ㅅㅂ
-
운동을 벅벅
-
12월이네요 3
시간빠르다
-
화학에서 물리 2
화학에서 물리로 바꾸려는데 강사 추천해주세요 아예노베임
-
“될성부른 기업에 통 큰 지원” 고려대 캠퍼스타운 스타트업 7년간 ‘매출 600억’ 2
고려대 캠퍼스타운 ‘2024 성과공유회’ 개최 7년간 189개 창업팀 육성…투자유치...
-
10시간씩자고싶음뇨
-
영어 노베인데 집에있네여
-
인천으로가자 3
오늘도 밤샘후논술 달려볼까요~
-
대학라인 2
언미화1생1 87 99 3 73 91 라인좀 봐주세요..
-
지금 미친듯이 존나 해놓기는 해야되나
-
음 졸린 아침. 3
다시 자기.
보여줄게 완전히 달라진 나
악수할때마다 총 카운트가 2씩 올라가니깐 무저건 짝수 아님뇨?
맞음뇨 ㅋㅋ
에잇 재미없엇네 ㅋㅋ
이런 ㅅㅂㅋㅋㅋ
파티에 있는 사람들의 수를 n이라고 하고, 각 사람을 p1, p2, ..., pn이라고 부르겠습니다. 각 사람 pi의 악수 횟수를 di라고 하겠습니다. 이때 우리가 증명해야 할 것은 d1 + d2 + ... + dn이 짝수라는 것입니다.
악수는 두 사람 사이에서 이루어지므로, 모든 악수는 두 사람의 악수 횟수에 각각 1씩 더해집니다. 즉, 악수가 한 번 일어날 때마다 악수 횟수의 총합은 2가 증가합니다.
예를 들어, p1과 p2가 악수를 했다면 d1과 d2가 각각 1씩 증가하므로 d1 + d2 + ... + dn은 2가 증가합니다. p1과 p3가 악수를 했다면 d1과 d3가 각각 1씩 증가하므로 d1 + d2 + ... + dn은 2가 증가합니다.
이런 식으로 모든 악수에 대해 악수 횟수의 총합은 2씩 증가하므로, 악수 횟수의 총합은 항상 짝수가 됩니다.
따라서 각 사람마다의 악수 횟수를 모두 더한 값은 짝수입니다.
좀 더 수학적으로 표현하면, 악수 횟수의 총합은 다음과 같이 나타낼 수 있습니다.
Σ di (i=1부터 n까지)
각 악수는 두 사람의 악수 횟수를 1씩 증가시키므로, 모든 악수에 대해 이 합은 2의 배수가 됩니다. 따라서 악수 횟수의 총합은 짝수입니다.
뭣
di라니 그래프이론을 아시는 분이신감 ㅎㅎ
53초전이면 합리적 의심으로 gpt
땡
그런거구나
사실 구글 ai인 Gemini한테 시켰어요 ㅋㅋ
ㄷㄷ
쌤쌤이로 할거임뇨
한 번의 악수는 악수 횟수의 총합에서 2명당 1번씩 카운트되어 2번으로 치환되기 때문에 악수가 몇 번 이루어지더라도 짝수일 수밖에 없음
확통교과서에 나오지않나
근가