쉽고 재밋고 개 유명한 문제 (3)
게시글 주소: https://h.orbi.kr/00070232954
전 문제들처럼 엄청 쉽진 않지만 여전히 쉬워요, 근데 너무 유명해서 몇명은 알꺼같은데 ,,
6개의 점이 있고, 이 점들중 임의의 두 점을 빨간색 혹은 파란색 선분으로 연결했다.
(어떻게 3점을 골라도 일직선 위에 있진 않다.)
이 때 한 색의 선분으로만 이루어진 삼각형이 있음을 보여라.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
하....
-
위 사진이 22수능 지구 1컷 43 아래 사진이 25수능 지구 1컷 44? 20문제...
-
작수 44434 올해 41341 미적분 4->1로 올린 걸로 과외 해보고 싶은데 가능 하려나요?
-
ㅈㄱㄴ
-
패오엑2도 해야되고 강연금도 다시 정주행해야되고... 재시만걸리지마라
-
나 올 때까지 폰하다가 나 들어오면 잤음 문제는 나 시험기간 때 들어오던 시간 새벽...
-
비틀비틀 2
삥글삥글
-
아 자기 싫다
-
15만덕 펀딩해주실분 11
사유 : 방금 닉네임바꿨는데 맘에안듦
-
지금까지 본 수능 중에서 원서 영역에서 맨날 예비 앞에서 짤리고... 올해는 진짜...
-
정담온 선생님꺼 들어보려고 하는데 어떠나요..? 이번 가갸거겨고교에서 나왔던...
-
슈냥의 25수능 출사표
-
ㄱㅇㅇ ㅇㅈ 7
-
고민되는시점에닥치고메디컬가라
-
아 2
이우에오
-
망햇다
-
쪽지좀요
-
또 나만 왕따지
-
뭐임?
-
딸치고 자야지 1
-
생1 도긩이 3
고3때 들었던 도긩이 스킬 체화하고 도긩이 인강판에서 사라진 뒤에 3년 동안 다른...
-
인설약 설공 4
취향차이임?
-
반성하겠습니다 12
요즘 오르비에 소홀했군요.. 하루에 10분정도만 하다니..
-
사랑했었어 후회 없는 사랑을 했어~~~
-
죽을거야 4
인생이 망하고말거야 이번학기도 또 학고받고말거야
-
키 크고 싶다 13
우유 열심히 마시면 클 수 있겠죠????
-
모아나1이 넘 재밌기도 했고 2는 넘.. 뻔했음 걍.. 싱겁게 끝나기도 했고
-
그냥고민 0
사실 그냥 진짜 요즘 드는 고민 생각들 자초지종 늘어놓은.. 07현역인데 내신...
-
2시 22분 0
수.갤의 2시 22분 7ㅔ이가 떠오르는 밤이군요
-
ㅇㅈ 1
재탕조이고
-
진짜 잔다. 0
자라. 캬캬.
-
저한테 마음 있었던 걸까요 하 다 지난 일이긴 한데…
-
ㅇㅈ 6
걍 많이는 안 못생긴 비실이임 머리 기르는 중임
-
어그로 ㅈㅅ띠 본인 꿈이 제약회사쪽인데 의생명융합학과랑 생명과학과 중에 어디를 가는...
-
1 : 처음이자 마지막 미팅 2 : 처음이자 마지막으로 간 홍대(길에 서 있엇음)
-
어떤 메커니즘으로 돌아가는지..
-
현생에서까지 뇨 말투 나도 모르게 써버리게 됨뇨
-
오르비 전용 GPT를 학습시키면 은테금테 얼마만에 달까 2
일단 오르비 메인글들을 다 학습시키는 거임(학습글은 빼고 순도 100% 뻘글로만)...
-
잘자용! 5
-
심심함뇨 10
뻥임뇨
-
고삼 친구들이랑 같이 학교에 있다가 집 올까
-
얘 때문에 시간 다 날아감
-
인생에서 대학생때만큼 바이크가 가성비 지릴때가 없는데 안전이슈만 없으면 ㄹㅇ
-
잠이안와요 7
그래서부엉이인형을 끌어안고누워있어요
-
마크가 문제다 사실 오늘 테러만 안 당했어도 하면서 하는건데..
-
할만한게 있으려나요
-
이제 슬슬 잘시간이네요 10
-
물리학과인데 4
문과로 물리학과와서 미적분 땜빵이 커서 그런데 12월까지만 개념의정상 듣고싶어서...
-
조합에서요… 1
nCr=n-1Cr+n-1Cr-1같이 알아두면 좋은 거 또 없을까요
이거 6개 점이 다 일직선상이면 어캄
아 ㅈㅅ 그거 빼야되네
어떤 3점도 일직선 위에 있지않음뇨
이런 기본적인걸 빼먹다니
임의의 점 p를 선택합니다. p에서 다른 5개의 점으로 연결되는 선분은 5개가 있습니다. 이 선분들은 빨간색 또는 파란색입니다. 비둘기집 원리에 의해, p에서 뻗어나가는 선분 중 적어도 3개는 같은 색을 가집니다. 일반성을 잃지 않고, 이 색을 빨간색이라고 가정하겠습니다. (만약 파란색이라면 빨간색과 파란색을 바꿔서 생각하면 됩니다.)
p와 빨간색 선분으로 연결된 3개의 점을 q, r, s라고 부르겠습니다. 이제 세 점 q, r, s 사이의 선분을 살펴봅니다.
만약 q, r, s를 연결하는 선분 중 하나라도 빨간색이라면, 예를 들어 q와 r을 연결하는 선분이 빨간색이라면, p, q, r은 모두 빨간색 선분으로 연결된 삼각형을 이룹니다. 따라서 증명이 끝납니다.
만약 q, r, s를 연결하는 모든 선분이 파란색이라면, q, r, s는 모두 파란색 선분으로 연결된 삼각형을 이룹니다. 따라서 증명이 끝납니다.
어떤 경우든, 한 가지 색의 선분으로만 이루어진 삼각형이 존재함을 보였습니다.
결론
6개의 점이 있고, 이 점들 중 임의의 두 점을 빨간색 혹은 파란색 선분으로 연결하면, 반드시 한 가지 색의 선분으로만 이루어진 삼각형이 존재합니다. 이 문제는 램지 수 R(3,3) = 6의 한 예시입니다. 즉, 6개의 점이 있으면 어떤 방식으로 두 가지 색으로 색칠하더라도 단색 삼각형이 반드시 나타난다는 의미입니다.
흠..
완벽하긴하네..
ㄷㄷㄷㄷ
지피티 냄새
멍청한 공대생은 GPT 없이 못 살아
님 항상 보면 수학 이론들 많이 알고 계시던데 수학과 지망하시나요
넨
오 ㄷㄷ 멋지네요 필즈상 수상하시길
그건 좀..
뭐임 또 나만 저능하지 ㅜ
저거 지피티임뇨
풀엇음뇨 헤으응
한 점 기준으로 같은 색 선분 3개는
필수인거 생각하면 풀리네용
이거 맞아요
선이 교차해서 만들어지는 삼각형 말고
점민 이어서 만들어지는 삼각형만 따지면
점 세개를 생각하고 빨빨파로 비원색 삼각형이 있음
그러면 한 빨변에 대해서 파파로 비원색 삼각형을 또만듬
이때 마지막으로 만든 삼각형에서부터 대충 대각선 그으면 파란색이든 빨간색이든 원색 삼각형이 생김
머지 이게
먼지 모르겟음
이거 됨뇨?
삼각형이 주어진 6개의 점으로만 이루어져야됨뇨
망했뇨
애초에 이풀이도 틀린거같기도 걍 머리가 안돌아감
문제가 너무 길어요 요약해주세요