전글 정답
게시글 주소: https://h.orbi.kr/00071150483
정답: O(존재한다)
임의의 n차방정식에 대해, n차방정식의 근을 x1, x2, ...xn, 최고차항을 a라 하면 판별식은 a^(2n-2) * (x1-x2)^2*(x1-x3)^2*(x1-x4)^2*...(x1-xn)^2*(x2-x3)^2*(x2-x4)^2*...(x2-xn)^2* ...... (xn-1-xn)^2, 즉 겹치지 않는 1에서 n 사이의 자연수 쌍 i, j 각각에 대해 (xi-xj)^2의 값을 모두 곱한 것으로 정의됩니다(사실 아니지만, 일단 동치니까...)
이 식이 글에서 언급된 판별식의 조건을 만족시킴은 쉽게 확인할 수 있고, 아주 열심히 노가다하면 근과 계수의 관계를 통해 오차방정식의 판별식을 손으로 구하고, 계수에 대해 다항식으로 표현됨을 확인할 수 있습니다. 물론 군 이론을 바탕으로 한, n차방정식에 대한 일반적 증명도 존재합니다.
당연하게도 가장 간단한 이차방정식에서 판별식 a^(2*2-2)*(x1-x2)^2 = a^2*(x_1^2 - 2*x_1*x_2 + + x_2^2) = a^2*((x_1+x_2)^2-4x_1*x_2) = a^2((-b/a)^2-4*c/a)=b^2-4ac입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
https://orbi.kr/00066243853/%EA%B3%B5%EB%8C%80-...
-
ㅋㅋ 이게 예비사수생
-
진짜 인과떨 사과붙 가나요... 인과가 1순윈데..
-
저는이쁘다생각해요
-
가까운데 가면 됨?
-
여러분은 꿈과 안정된 삶 사이에서 고민해본 적이 있나요 11
저는 원래 연세대 대기과학과에 가고 싶었습니다. 고3 1년 동안 딱 그 한 곳만...
-
저녁여캐투척 9
음역시귀엽군
-
영어 사탐은 점수가 안정적이고 국어는 1이 뜨긴해도 고정은 아닙니다 공익 근무하면서...
-
그리워하면 ~~~~~~~~~~~~~~~~~~~~~~~ㅇ 12
언젠가 ~~~~~ 만나게 되는 ~!~~~~~~~~~~~~~
-
찰나의 순간에서 찰나>>이게 불교용어라네 첨 알았음...
-
아 뭐 먹지 7
흠
-
슬프지만 예 한국에는 노력만으로는 갈 수 없는 대학교가 하나 있습니다
-
하재호가 01인데 그럼 이번엔 02일까 03일까
-
전 특출난게 없어서 뭔가뭔가임…
-
당분간 고토히토리모드 on
-
강기분 들었는데 틀딱 기출 봐야함? 최근 기출만 보면 안 됨? 독서 기준
-
+1 안하고…
-
심장 빨리뛰고 숨이 잘 안쉬어져요 토요일 면접인데 벌써 이러네요ㅠㅠ
-
다들 굿밤이에용 11
。◕‿◕。
이정도돼야 의대가는구나
아니 판별식은 왜 존재함..
근데 5차방정식 판별식 이런건 의미가 뭐죠 이차방정식같은건 직관적으로 느낌이 오는데
전글에 대충 써있는데, 허근이 2개, 6개, 10개...면 음수고, 0개, 4개, 8개... 면 양수에요
식을 뜯어보면, 그럴 수밖에 없게 구성되어 있어요