Orbi지형T_[점수를높이는5M.Column] Ch2.등비수열,수열의합'지형도를그리다'
게시글 주소: https://h.orbi.kr/00071447980
Orbi_Column_김지형T_수1(등차등비수열)_개념.pdf
Orbi_Column_김지형T_수1(수열의합)_개념.pdf
[5-Minute Column]
"Major Past Math Questions
Reflecting Trends"
CH2 Geometric sequence
CH3 Sum of a sequence
오늘 소개해드릴 챕터는 등비수열과 수열의 합 파트입니다. 첨부파일에는 등차수열/등비수열과 수열의 합 개념 부분만 올려두었어요. 이 자료는 현강에서 설명한 내용을 정리한 것으로, 필요하신 경우 다운로드하여 읽어보시면 큰 도움이 될 거라 생각합니다.
등비수열과 수열의 합은 등차수열 파트와 달리, 기출문항 중 중요한 문제는 많지 않아서 개념 위주로 정리하였습니다.
그럼 시작해볼게요!
Chapter 2: 수1 등비수열
(Geometric sequence)
등비수열은 무엇보다 공비를 직관적으로 파악하는 능력이 가장 중요합니다. 등비수열의 핵심은 각 항이 일정한 비율(공비)로 이전 항과 연결되어 있다는 점인데요. 공비를 빠르게 이해하고 활용할 수 있다면 문제를 푸는 속도가 훨씬 빨라질 뿐만 아니라, 다양한 응용 문제에서도 효과적으로 접근할 수 있습니다.
이와 같이 다양한 등비수열의 공비를 빠르게 파악하는 능력은 문제를 해결하는 데 있어 매우 중요한 역할을 합니다. 공비는 등비수열의 구조를 이해하는 열쇠이자, 다음 단계로 나아가는 출발점이 되기 때문인데요. 공비를 빠르게 파악하면 수열의 일반항을 구하거나, 합공식을 적용하는 데 훨씬 수월해집니다.
특히, 미적분에서 자주 등장하는 등비급수를 계산할 때도 공비를 정확히 이해하고 활용하는 것이 핵심입니다. 예를 들어, 등비급수의 합을 구할 때 사용하는 공식은 모두 공비의 성질에서 출발합니다.
공비의 크기(절대값)가 1보다 작을 때, 등비급수의 합은 극한값으로 수렴하게 되는데, 이는 무한급수 문제를 푸는 데 매우 중요한 개념입니다. 이때 공비를 빠르게 파악하고 공식에 대입하는 과정이 자연스러워진다면, 복잡한 계산도 한결 쉽게 해결할 수 있죠.
이번에는 등비수열의 합 증명 과정에 대해 살펴보겠습니다. 등비수열의 합 공식을 정확히 이해하고 유도 과정을 기억하는 것은 문제 풀이뿐만 아니라 수학적 사고력을 키우는 데도 큰 도움이 됩니다. 특히 공식을 단순히 암기하는 것에 그치지 않고, 유도 과정을 이해하면 다양한 문제 상황에서도 유연하게 응용할 수 있게 됩니다.
Chapter 3: 수1 수열의 합
(Sum of a sequence)
**(5)**번 문제는 모의고사 기출문제를 풀 때 종종 등장하는 형태로, 한 번 익혀두면 매우 유용하게 활용할 수 있는 유형입니다. 특히, 이 문제는 **(1)**번과 **(2)**번의 결과를 더해 정리한 것이기 때문에 구조적으로 간단하고 이해하기 쉬운 편입니다.
등차수열과 등비수열의 합 공식은 다양한 문제를 빠르고 정확하게 해결하기 위해 꼭 알아야 하는 핵심 도구입니다. 이 공식들을 제대로 활용하면, 복잡해 보이는 문제도 단순한 계산으로 빠르게 정리할 수 있어요.
오늘 다룬 내용은 비교적 어렵지 않지만, 개념을 몰랐던 학생들에게는 매우 유익한 정보가 될 거예요. 무엇보다 중요한 건, 공식을 단순히 외우는 것보다 그 원리를 이해하는 것입니다. 개념을 제대로 이해하면 다양한 문제에서 응용할 수 있어 학습 효과가 훨씬 커질 거예요.
다음 Column에서는 수학적 귀납법에 대해 다룰 예정입니다. 특히, 작년 6월/9월 모의평가와 수능 22번에서 출제된 문항들을 깔끔히 분석하며, 최근 귀납법 문제가 어떤 흐름으로 출제되고 있는지 한눈에 정리해드릴게요. 이를 통해 귀납법 문제에 대한 이해를 쉽게 높이고, 실전에서 바로 적용할 수 있도록 도와드리겠습니다.
혹시 오늘 다룬 내용을 더 자세히 배우고 싶다면, Orbi 인강에서 확인해보세요. 제가 직접 준비한 강의에서는 개념부터 문제풀이까지 하나하나 차근차근 설명해드리니, 혼자 공부하며 놓쳤던 부분도 확실히 채울 수 있을 거예요. 수학이 점점 자신있어지는 경험을 할 수 있도록 함께 만들어가는 강의가 되겠습니다.
오늘 하루도 화이팅하시고, 더 나은 내일을 위해 계속 나아가 봅시다!
Orbi 강의에서 여러분을 기다릴게요!
유익했다면 좋아요! 팔로우! 부탁드립니다!!!
그리고 수학 질문 마구마구 댓글 달아주시거나 쪽지주시면하나하나 상세하게 답장해드리겠습니다아아아
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
사탐런했는데 개념도 안돌림 영어단어 1회독도안함 1월인데 수학 미적확통만함 ㅠㅅㅂ...
-
ㅇㅈ 7
배고프다..
-
최장 연애: 중3때 60일인가 사귄거
-
일단 프리미엄 부계로 온댔고 난 에메1이요
-
나도끼워줘요…..
-
이게 뭐지 하는 글 마니마니 쓰는 사람들 잇음 나한테 피해주는게 아니라서 차단하기...
-
가지말아요 다들
-
베베
-
내글 봤는데 2
90퍼가 뻘글이네
-
드레디어 9
귀엽다
-
티내면서 글 쓰는 건 다 어떤 사람인지 알잖아 그러니까 그럴 수도 있다본다
-
이러면 메인 갈 수 있나요?
-
하
-
ㅈㄱㄴ
-
저랑 모텔가실 남르비 있으신가요? 이상한의도아니구요저도모텔ㄱㅁ사진을올리고싶어서요...
-
으아 2
오늘 새벽은 집에 잇어야. 겟다 피곤하다리
-
ㄱㅁ레전드 0
어떤 얘가 지 연애썰로 막 카톡내용이나 그런걸로 기만을 시작함 수상한 누군가가...
-
7번말함
-
6월쯤 들으려면 지금부터 대기 걸어놔야 할까요?
-
눈 코 치아 손가락 다리 발목이 장애가 없는선에서 쓰레기임
-
나도 무서운 사람이 되겟음
-
작년 9모 다시 풀어봤는데 그때도 미적 못했는데 더 못해짐 미적 그냥 포기 마렵네
-
냥냥
-
나도 ㄱㅁ하고 싶네 12
집에 ㄱ지ㅁ 베베 하고 싶네
-
네~
-
공익 알아봤는데 복무기간 3년 실화임??ㅅㅂ;; 법무관 군의관도 3년이라...
-
ㅈ노잼임
-
메인 뭔일임? 3
누가 뭐 자랑했음?
-
지금부터 걸으면 0
홍대 몇시에 도착하지 카와카츠 먹고 싶다
-
바보야?
-
‘님도 안 씻으셨어요?’
-
우짠댜
-
ㅋㅋㅋ병신들 2
뭐 병신아 킥킥
-
닉변할까 0
올리부엉이
-
ㅋㅋㅋ병신들 5
-
부터 들어도 될까요 지금 라이브반 중도합류하기엔 너무 늦은거 같아서.. 그냥 문제집...
-
그냥 갑자기 반에 들어갈때 같은반 남자애가 나보고 "@@이 왤케 여자같이생겼지"...
-
히히 발사발사 5
발사!!!!
-
무반응
-
전공 못살리는 백수 많음?
-
아니 롤할라그랫는데 16
집에가지마 쓰다가 시간 다갔네
-
설경vs고경 5
인프라,아웃풋 등등.. 압도적으로 차이 큼?? 개인역량으로 커버칠 수 있?(금융권)
-
ㅋㅋㅋ 병신들 12
모 기하 아조씨가 부탁하신 그림 나왔습니다
-
❤️❤️
-
조예 깊은 쥔장이 직접 말아준 째애즛마,
-
뱃지만 받고 탈릅을..
-
이래봬도 남자임 3
키도 작은..
-
꼴보기싫음 정작 들어가보면 어그로성글 시간낭비만 ㅈㄴ시키고 보나마나 현생에서 산소낭비도 ㅈㄴ할듯
재수했을때 수학 성적 진짜 많이 올려주신 고마우신 지형쌤.. 역시 인강 진출 하실 줄 알았습니다ㅠㅠ
헐 오랜만이야ㅠㅠㅠ 고마워!!! 갠톡좀주세요ㅎㅎㅎ