[박수칠] 미분계수와 함수 극한의 관계에 대하여
게시글 주소: https://h.orbi.kr/0007810298
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
5분 휴식 1
하하
-
얼버기 1
-
카페인도 끊었는데 잠이 안옴
-
작년에 한양대 공대 붙여놓은 후 1학년 1학기에 모든수업 빠지고 학사경고 받고...
-
대학 2번 옮기고 군대까지 다녀온 형 보면 난 아님ㅎ
-
히히 1
우히히
-
ㄴ 이분 바보 1
11시에 깨워쥬
-
가 뭔가요? 몇개년치 자료에서 다 평균 합격점수는 글리가 1위네요..
-
뭐 이런소리 나는데 눈 땜에 뭐 무너진거 아님?? 인근에 나무도 막 무너지고 그랬는데… ㅠㅠㅠ
-
3ㅎ5 진학사 입력한사람들은 23명중10명 충족인데 몇퍼정도 예상되나요? 23...
-
강의실에서 n제 풀어야겠음 갑자기 속 뒤집어지네 이런 학교 못다니겠다
-
좆반고 내신7 0
내신7등급인데 논술감점 클까요 단국대 논술썻는데 납치당할까 두려워요ㅔ
-
근거가 많이 없는 불안함인 거 같은데 내년엔 일단 그냥 돈 벌 길 만드는 거랑...
-
노베 기출코드 2
김성은 커리 타려는데 기출 100제는 양이 좀 적은거 같아서요 기출만 양승진...
-
허...
-
노베라 김성은 커리 타려는데 기출 100제 양이 적은 거 같아서요 기출만 다른 강사 강의 들을까요?
-
10분휴식 4
하하하 즐겨야 한다 하하하
-
국어 커리 고민 1
공통 2틀 언매 4틀(ㅅㅂ) 인데 언매에서 21분 박고 폭사했음 솔직히 언매에서...
-
국어 커리 고민 0
25 수능 언매 원점수 78점(독서 7틀, 문학 2틀) 독서 내용 확인, 추론 엄청...
-
줘어어어
-
진찌 세상엔 머리 좋은 사람이 너무 많음뇨
-
아 내일 복귀네 2
복귀하고 공부 다시 시작해여겠다
-
뉴비네요
-
제발제발쪽지부탁드립니디두ㅡㅜㅜㅜ
-
ㄹㅈㄷ 몰카인가 생각했네
-
질문있는
-
10분휴식. 8
-
아 ㅈ됐네 2
어제 저녁 먹고 잤는데 왜 일어나니까 4시냐
-
그럼 지금 고속 자체가 의미 없지않나 차라리 담임쌤도르가 더 의미있는거임?
-
하지만 우리의 윽건이는 ‘꼬우면 재수하지 말지 그랬어’로 받아쳐서 그 누구도 더...
-
어이 내일의 나 4
일어나면 게시글 밀어라
-
잔다 4
르크
-
들 때가 있음 디시콘은 종류가 다양해서 다양한 감정을 표현할 수 있는데 오르비...
-
자야겟뇨 4
오늘도 암것도 안햇뇨
-
역시 하루종일 침대에 누워있는게 맞음 남자는 허리가 생명
-
발뻗잠 3
-
덕코 받고 싶다 6
-
목시 강기원 들을 건데 피시방가서 해야하나 강기원 30초컷이라던데 맞음?
-
블라글 지워주실 수 있을까뇨,,
-
글젠은 없다니
-
우흥
-
ㄷㄷㄷㄷ
-
현지에서 살다온 사람들은 무슨 지랄을 떨어도 이길 수 없음
-
밖에서 무ㅜㄴ소리가났는디 지금 3시33분에다가 지금밤새는데 무섭고 아니 하 디지라칸다
-
전과목 고정백 12
국어 고정백은 어딘가에 잇다수학 고정백도 좀 잇다 영어 고정백도 아마 잇을...
-
수학 실수만 안했다면 영어 하나만 맞췄다면 물리 실수만 안했다면 생명 비유전만 맞았다면 ㅋ.ㅋ
-
오르비ㅈㄴ좁다 6
같은동네사는사람1명 5년전에같은커뮤했던사람1명 트위치 방송 챙겨봤던 사람 1명 을...
-
최근에 여대 인식 안좋아지고 있다는 말은 좀 그런게 1
ㅁ갈리아가 나오지 않았던 2000년대에도 이미 욕먹고있었음 찾아보니까 그때도...
-
제 롤닉은.. 12
본명 쓰는 중임뇨
-
애드웨어 많이 걸렸는데 시도때도 없이 11번가 g마켓 팝업 뜸
좋은글입니다!
감사합니다! ^^
소위 말하는 '야메'같아 보이는 나만의 공식도 논술에서 제대로 증명을 해내면 사용해도 되겠지요?
글쎄요... 채점 기준에 대해 잘 모르지만
교과 과정에 충실하게 작성한 것이
모범 답안이라 생각합니다.
특히 논술의 경우에는
문제 해결에 필요한 교과 과정 내용을 제시문의 형태로 주기 때문에
그 테두리 내에서 해결을 해야 좋은 점수를 받을 수 있을 겁니다.
갓수칠
언제 들어도 좋은 말이네요~ ^^
이걸 적절히 연습할 수 있는 문제가 예전 사관학교 ㄱㄴㄷ문제에 있죠
아 그런가요?
요즘 출제 경향에선 살짝 벗어난 감이 있지만
개념 이해에 참 좋은 유형이죠~
뭐야
미정계수구하는거분명히배웠는데왜처음부터뭔소린지하나도모르겠지???
ㅠㅠ
미분계수의 정의 바로 다음에 나오는
함수의 극한 유형을 복습하면 됩니다~ ^^
사실 많은 사람들이 아무 관계가 없는 내용인데 미분가능성을 전제로 두고서 막 미분하는 경향이 있는데 그런 사람에게 보여주면 아주 좋은 글인것같습니다!
감사합니다.
개념에 대한 이해가 부족한 상태에서 문제를 풀 때 위험한 것이
'이렇게 해서 답을 맞췄으니 다음에도 똑같이 하면 되겠지'
라고 생각하는 걸 겁니다.
답을 맞췄더라도 미심쩍은 부분이 있다면
이유를 꼭 확인해야 되겠죠.
앞으로도 개념을 이해하는데 도움이 될 만한 글
종종 올리겠습니다.
딱저네요..미분가능성 전제해서 막미분..
이관데 이런개념들부족하면 수1을다시보는게맞겠죠?
h가0으로갈때 h^2이 0+로가는건 왜그런건가요..
(실수)²≥0이기 때문이죠.
h→0이면 h²→0이고, h≠0이니까 h²>0입니다.
따라서 h²→0+가 됩니다.
함수 y=x²의 그래프를 그리고 x→0일 때 y값의 변화를 보면
0보다 크면서 0으로 다가가기 때문이기도 하구요.
그리고 본문의 내용들에 대한 이해가 부족하면 수학1을 다시 보기보다는
공부할 때 디테일 있게 하는 것이 중요할 것 같습니다.
개념 이해한 다음 다양한 유형을 풀 때 맞췄다고 그냥 넘어가지 말고,
해설을 한줄한줄 보면서 왜 이 방향으로 가는지 자꾸 따지는 거죠.
' f"(x)>0이면 f(x)가 아래로 볼록하다 ' 라고 외우지 말고
' f"(x)>0이면 f'(x)가 증가하고, f'(x)가 증가하면 접선 기울기가
점점 증가하는거니까 f(x)가 아래로 볼록하다 ' 라는 식으로
중간 과정을 집어 넣으면서 이해하는 것이 중요합니다.
갓수칠님이 마지막에 말하신방식대로 미2공부를 다 끝냈습니다
근데 개념이부족하다는 찝찝함과 불안감은 왜항상있는걸까요..?
미2정석을 꼼꼼히봐도 개념을확실히안다는 느낌이안오더라고요
예를들어 역함수문제를풀때 일대일대응이라는것에 꽂혀서풀다가 문제가안풀림을알고
10분고민뒤에 단조증가 단조감소의 특징을 기억해내고 문제에적용합니다
풀었는데도 찝찝하고.. 체크해놧다가 다시풀어야하나 생각도들고..
개념을 완벽하게 안다는 것을 제자신이 어떻게 알수있을까요?
답변해주시면 정말감사하겠습니다 ㅠㅠ
어떤 책으로 공부하든, 개념을 완벽하게 알 수는 없습니다.
중요한 것은 반복하면서 이해도를 끌어올리는 것이죠.
문제 풀 때도 마찬가집니다.
내가 이해한 것보다 높은 수준을 요구하는 문제도 있고,
'내가 잘못 이해했구나'라는 깨달음을 주는 문제도 있습니다.
이럴 때 필요한 것이 필기고 정리죠.
지금 이해했고, 풀 수 있다 하들 나중에도 그럴거라는 보장은 없습니다.
개념 공부하면서, 문제 풀면서 새롭게 깨달은 것이 있으면 꼭 기록해야죠.
그리고 완벽해야한다는 강박 관념보다는
빈 부분이 생기면 꼭 보충해야 한다는 강박 관념을 가져야 합니다.
수학은 '이 정도면 됐다'라 생각하는 순간 망하거든요.
개념 복습 안하고, 문제 덜 풀면 금방 감이 떨어집니다.
이 부분 개념 복습할때 항상 힘들었는데 자세한 설명 감사드립니다.
앞으로도 특정 개념/유형에 대한 해설을 종종 올릴 예정입니다.
많은 관심 부탁드립니다~ ^^
WOW 시원하네요 진짜 최고네요 미분계수의 정의에 따르면 저 풀이가 안되는데 저렇게 푼 풀이가 왜 있는지 엄청 궁금했었는데... 저것 때문에 잠이 안와서 늦은 시간까지 저 풀이에 대한 것만 엄청 찾았네요
정말 고맙습니다♡ 진정 수학 고수 이시네요
감사합니다! ^^