-
절망하는건 6일 뒤에 해도 늦지 않아요~ 두번 절망하면 슬프잖아요?
-
확통 만점 표점 너무 높은데
-
그만 놀려주세요
-
연대 공대 스나 해볼만한가요
-
2컷이 47~48이려나?...
-
한국 버튜버 혐오함? 서로 싸우고있네 둘 다 똑같아보이는데
-
다이아 28개 캤다. 뿌듯하다
-
이렇게라도 기분 낼래
-
ㅋㅋㅋㅋ 씨발이네
-
일단 확실하게 사탐 괴물만 뽑는듯 변별 완전 잘하심 시간 개빡빡하고 문제도 개...
-
풀면서 느낀점은 그냥 ㅈㄴ 꼼꼼히 읽어야 풀린다는거였음
-
궁금하네요
-
대충 플레이타임 5~10시간 정도 나오는 걸로 퍼즐 요소는 싫어하지 않음
-
수1수2미적 1
개념 진도 한번에 나가는데 다들 몇개월 걸림?
-
표본이 메가나 ebs가 더 많아서 더 정확하지 않나요? 먼가 난리 난 분위기인거같길래
-
인문학, 자연과학, AI기반 3가지 그렇다고 특정 전공만 할 수 있는 것이 아니라...
-
지금 내가 벌점까지 쳐맞아가며 오르비 정상화할라고 혈투중인데 ..너희 다...
-
오늘 일병 담 9
드디어...ㅋㅋㅋㅋㅋ 26년 ㄹㅇ 까마득하다 예전엔 그냥 감조차 안와서 아무 생각이 없었던 거였어
-
아니 폭빵 예측을 하는게 생겼어요?? 이러면 심리전 두번해서 난 펑크라고 생각해서...
-
저도 뉴진스 노래 좋아하고 잘되면 좋겠다고 생각하지만 다들 수능 공부 많이 하셨으니...
-
병역메타나 합시다 15
군대 다들 언제쯤 가시거나 다녀오셨어요?
-
시대 70-72라는거같던데 하ㅠㅠㅠㅠ 걍 ㅈㄴ 우울하네
-
탐구 망쳤는데 중경외시는 될까요.. 화작 97 확통 88 영어 2 사문 45 세계사...
-
갈 데도 애매하네요 ㅠㅠ
-
난 좀 보내주면 안되나 엉엉
-
이건 걍 키보드바꿔야함?하는겜 롤이라 q젤 많이씁니다 으 다른데 돈쓸데도 많은데 하필 ㅋㅋ
-
학교도서관에서 2
고1수학공부하기
-
공통 1틀인데 표점 140 가능?
-
어디갈수잇지
-
여캐프사=남자 12
남캐프사=여자 고로 나도 여자임 병역의 의무 컷 Let's go
-
내 범고래가!!
-
저는 한 달 뒤 1월 1일이 되면 옯갇님이 돌아오실 거라고 믿어요 6
그러합니다...
-
내가 왜 그랬을꼬
-
저는 남붕이같나요? 27
남붕이처럼보일려고 노력많이했었는데
-
사실저도여붕이임 5
네
-
저번 백양나무님처럼 메타가 확 뛰어서 올라갈 때도 있지만 요즘 오르비는 대부분...
-
심연이다...
-
저도 사실... 2
https://orbi.kr/00070189292/여기-합격-뱃지-달고-있는-옯비언-...
-
메인 처음가봄 2
신기하군
-
언매 92(공통-8) 1가능성 잇을까요..? 원래 메가 빼고 대성 진학 ebs 부산...
-
전국민 중성화가 이 모든 혼란을 잠재워줄 수 있지 않을까
-
숙대 맛집 추천 0
중식당 여기 한번 가봐라 존나맛있다
-
패딩입었는데도 덜덜 떨림
-
저번에 몇화까지봤는지 기억이안남
-
방송 on
-
와 뭐야 10
진짜 한 판 붙나요
문제 푸는데 큰 지장있는건 아니겟...지만? g (0)>0 입니다
풀이좀 올려주세요
일단 g (-1)=0, f(x)=f (x) 놓고 시작
(가)조건에서 f (3)=|f'(3)|>=0이므로 결국 f (3)>=0
(나)조건 부등식 왼쪽은 정적분~급수에서 오른쪽 높이잡기한것
거기에 리미트 n무한대 붙이면 바로 오른쪽 식과 똑같이 정적분됨
근데 오른쪽 높이잡기 한게 정적분 값보다 작으려면 그함수는 감소함수여야함
(증가함수면 오른쪽 높이잡기한게 정적분 보다큼)
근데 a,h에 따라 g (x)는 양의실수에서 항상 감소
따라서 x> 에서 g'(x)=f(x)<=0
이제 (가), (나)조건을 합치면 x>0에서 f (x)<=0이어야 되는데 f (3)>=0이므로
f (3)=f' (3)=0이 되야하고 (0에서 극대값이고 그값이 x축과 접함)
f는 최고차항이 음수인 삼차함수 그래프
g (x)는 도함수인 f (x)그래프에 따라 개형을 그리면 최고차항이 음수이고
x=0에서 극대값을 가지고 g (x)=0이 x=3에서 삼중근,x=-1에서 한개 실근을 가져야 |g (x)|가 양의실수에서 미분가능
이제 대입해서 계산하면 답5번
첫줄에 g'(x)=f (x)
도출된 g(x)가 항상 나 조건을 만족하나요? g(x)에서 x=3에서 양음 부호가 바뀌는데 나 조건에서 왼쪽 식에서 a=2 h = 2라고 가정하면 x=2에서 x=4까지의 오른쪽 잡기가 되는데 이때 오른쪽으로 잡아서 생기는 직사각형들의 면적이 x=3 이하에서는 양수이고 x=3 이상에서는 음수인데 이때 x=2에서 x=4까지의 적분값이 크다고 확신할 수 있는지 궁금합니다.
감소하는 형태로 X축 밑으로가면 직사각형의 넓이가 정적분의 넓이 값보다 커지지만 값이 음수이므로 필연적으로 항상 작을 수 밖에 없습니다
아 그렇네요 감사합니다.
댓글다신줄 몰랐네요..ㅈㅅ알람이 한번만 떠서 달빛님이 잘 설명해드림 ㅇㅇ
만약 f의 중근아닌 또 다른 실근이 x>0에서 존재하면 위의 해설과는 다른 결과를 낳을 수도 있지 않나요?
중근아닌 실근이 x>0에서 존재하면 양의실수에서 f (×)<=0라는 조건을 만족시키지 않으니 실근한개는 음수에서 생겨야 하겠져
아 g(x)가 항상 감소하니 맞군요
이 문제 (가) 표현이 마음에 드네요 평소에도 이런 표현으로 문제 나오지 않을까 생각했던 부분인데 굉장하십니다 ㅋㅋ
뭘요 ㅋㅋ 작년수능b 30번 f'(x)=무리식>=0 보고 좋아보여서 절댓값으로 바꿔본 거 뿐이에요
미적자작문제 검색하다 풀어봤는데 정말 좋네요^^
미적분 자작문제 시간되실때 더 올려주세요!ㅎㅎ
문제 되게 좋네요~
감사합니다 자주풀러오세요