-
거기서도 누울거지?
-
수능에피를 목표로 했으나 실패하였고 센츄 달고 자기위로 좀 해야겠다
-
얼버기 기상 11
오늘은 고딩때 다녔던 수학학원쌤이 점심사주는 날}~~~~
-
과잠 입고 가야지~
-
저는 4,13번 틀렸는데요,,, 워낙 최상위권 분들이 많기도 하고 그렇기에 기존에...
-
https://orbi.kr/00067153392/%EA%B8%80%EC%9E%90%...
-
한양대 약대생임? 에리카 약대생임? 궁금
-
작년부터 0
한의대 뱃지 받으려고 7번 넘게 인증했는데 왜 안달아줄까요... 뭐가 문제지...
-
뭘 읽지....추리소설 좋아하긴하는데
-
저는김밥이랑곰탕먹었어요 어제수익일부를오르비언들에게 맛있게드세요 맛점~
-
언매 71/24 확통 74/26 영어 2 한국사 2 생윤 39 사문 45
-
3판 다 완패해서 우러써
-
발뻗잠 가능인가?? 서강대임
-
나 그럼 오늘 알바가야되는데 으아아아
-
시간 더럽게 안 간다
-
외우는거는 못 하는데 오르비언들 흑역사같은거는 잘 기억함
-
?
-
물2는 첫 경험이라 너무 무서워요 ㅠㅠㅠㅠㅠㅠ
-
글쓰려다 17
특정 위험 생길거같아서 사렸어요
-
가슴 졸이고 계실 이공계 수험생 분들께는 이기적으로 들리시겠지만... 연대 논술...
-
진짜 찐으로 병신인가....
-
사실 며칠 전부터다
-
이거어떡해하냐 6
혼자할수있는거맞냐
-
지금 국숭세단 안정~ 적정에 숙대 적정~소신 라인인데 삼반수 고민 중이거든여 근데...
-
그냥 지랄하는중
-
2026 이동훈 기출 https://atom.ac/books/12829 안녕하세요....
-
뀨뀨 8
뀨우
-
ㅜㅜ
-
고양이... 같다고 해야 되나 평소에 안 그러던 사람이 따수운 말 한 마디 해주면...
-
아는 사람 뜨는게 신기하다
-
저도 사실 은테 5
금테 달고 싶어서 달았어요 ㅜㅜㅜ
-
본캠인척 하는 애들없을거같지만 현실에서 개많음 인스타에서 절대 분캠인척안보일라고...
-
죽어
-
ㅈㅅ
-
내 예상엔 2030~2035 사이에 인기가 상승하지 않을까 싶음
-
오늘 목표는 6시간
-
.
-
잘생기고 예쁜 애들 ㅈㄴ 많네.. 이게 나의 마지막 보루인데..
-
덕코는 6
도당체가 어따쓰는거임? 이걸로 편의점 결제 된다는 거 ㄹㅇ이에요?
-
어느캠퍼스냐고 물어봤을때 얼버무리는 사람임 얘네는 이미 본캠에 자아의탁해서 더이상의...
-
나는 성대가 싫어요 11
구조가 너무 어려워요
-
저도 사실 설뱃 4
분캠으로얻음...
-
언제 하실 예정인가요?? 전 3떨할까봐 언제 할지 모르겠네요
-
물2로 가면되는구나!!
-
경주캠으로 단거에요.. 그랬다면 얼마나 좋았을까
-
개맛있음
-
이게 올수 화1 지1 50 47이고 지1은 4번 틀렷는데 만약 삼반수를 하게 된다면...
-
국문과를 다니게되면 온갖 고전문학을 공부하고 현대문학 교육 그런것들을 배우게되는데...
-
왜 아직까지도 있는거야
첫 댓 빌립니다.
본문에서 언급한 칼럼입니다!
https://orbi.kr/00062385201
그리고 이건 이 개념을 활용한 문제입니다.
한 번 풀어보세요.
https://orbi.kr/00067613830
진짜볼때마다 수학존나잘한다
항상근데 96점이상에게 유용한 팁 느낌 ㅜ
오 중요한 피드백 감사합니다.
2등급 3등급을 위한 칼럼도 앞으로 작성해볼게요!!
근데웹툰보다재밋어요
지금까지 봣던 칼럼중에서 가장 이해잘되고 쓸만한듯
이차함수 증명 부분에서, 만약 원점이 이차함수 안쪽에 생겨서 접선을 그릴 수 없으면 어떡하죠??
극점이 안생기죵
오 좋은 질문이네요 !!
그 경우는 접선이 안 생기니까, 분수함수가 극값을 가지지 않는 경우라 할 수 있습니다.
이렇게만 말하면 그림이 상상이 잘 안 되죠??
원점이 이차함수 안 쪽에 있다는 것은, 이차함수가 두 근을 가진다는 뜻입니다.
즉, 처음의 분수함수에서 분모가 0이 되는 곳이 두 개 있다는거죠.
이 경우에는 첨부한 사진처럼 극점이 안 생길 수가 있습니다.
(제가 설명하는 동안 수능조커님께서 답변달아주셨네요)
오 감사합니다 !!
외부의 점에서 그을 수 있는 접선의 개수는 함수, 점근선, 변곡접선을 경계로 달라집니다
한 점의 근방을 기준으로 위로 볼록은 접선보다 함수가 아래에 있고, 아래로 볼록은 접선보다 함수에 위에 있다는 의미로 볼 수 있어요
무민님 지수함수와 로그함수가 역함수 관계일때 한쪽을x축으로k y축으로k로 평행이동하면 대칭이 깨지죠?
네 그렇죠 !
통통이를 위한 칼럼은 없나요?ㅠㅠ
수1 수2 미적만 쓰는 중입니다 ㅜ
와.. 뉴런에 들어가도 손색없을만큼 유용한 내용이네요! 잘 봤습니다!
수학을 엄청 잘하시네요^_____^
감사합니다 ^_____^
ㅋㅋㅋㅋ ㄹㅇ 쌌다
ㄷ ㄷ
와 미쳤다..
ㅁㅊㄷㅁㅊㅇ...
복잡한 식을 익숙하게 변환하시는 포인트가 넘 유용하네요.. 감사합니다
핵심을 잘 짚으셨네요!
앞으로도 좋은 칼럼 많이 올릴게요 :)
맛나다
물2러 ㄷㄷ
와 머리 망치로 얻어맞은기분임
글 잘 봤습니다! 그런데 혹시 삼차함수에서 a값 구할때 왜 접점이 -2로 바로 보이는건가요?!
삼차함수와 어떤 직선이 두 개 이상의 교점을 가질 때,
그 교점의 x좌표 합은 동일합니다.
삼차함수를 f(x), 어떤 직선을 g(x)라 해볼게요.
방정식 f(x)-g(x) =0 을 만족하는 x가 교점의 x좌표잖아요?
그런데 근과 계수의 관계에 의해 g(x)가 식이 어떻든
방정식의 삼차항 계수와 이차항 계수는 변하지 않습니다.
근의 합이 일정한거죠.
위 문제로 돌아가볼게요.
삼차함수와 x축이 -4, 0, 0을 근으로 가지니까 합은 -4입니다.
삼차함수와 y=ax 직선은 b, b, 0을 근으로 가집니다.
(b는 접점의 x좌표)
b+b+0=-4, b=-2
와 감사합니다 선생님 너무 멋있어요ㅜㅜ
권경수 선생님 몫함수랑 비슷하네요
아래쪽에서 x로 나눠서 x(x+4) = a 로 계산하시는 부분에서 x로 함부로 나누기가 망설여지는데 선생님처럼 과함하게 나눌 수 있는 이유가 뭔가요?? 연속이기 때문인가용
x=0 이외의 부분을 관찰하고 있기에 나눌 수 있는겁니다.
인수의 관점으로 생각해볼게요.
x제곱(x+4)-ax=0, 이 식이 근으로 0,b,b를 가져야 하죠?
x로 묶으면 x { x(x+4) -ax } =0
여기서 대괄호 안의 부분인 x(x+4) -ax만 관찰한 셈이죠.
관찰하는 이외의 부분의 인수는 다 날려버릴 수 있습니다. 나머지 근들은 유지되기 때문이에요.
이에 대해 자세히 다룬 칼럼이 있습니다.
https://orbi.kr/00062385201
팔로우 해두시면 앞으로도 좋은 칼럼을 많이 만날 수 있어요!
우와... 간단하지만 놓치고 있던 내용이네요. 감사합니다
아... 이미 알아보셨을 거 같긴 한데
x { x(x+4) -ax }가 아니라
x { x(x+4) -a} 입니다.
대댓글을 써버려가지고 수정이 안 되네요 ㅜ
이외의 내용은 동일합니다.
이거 약간 기울기함수같네여
(0,0)과 (x,f(x))를 이은 기울기함수
와 진짜 사랑합니다 y=x/x^2+ax+b꼴일때 극값이 얼만지 구해도 미지수 4개 식 4개의 미분식과 함숫값식으로 노가다했던 기억이 있는데 이런방법이 있었네요... 선생님 다른 칼럼도 들어가 읽어봤는데 애초에 함수식에 대한 이해도가 엄청나신거같아요.... 존경합니다 좋은칼럼 감사드리고 앞으로고 부탁드려요....ㅎㅎㅎㅎㅎㅎ
Mi친 너무좋아
한 수 배우고 갑니다